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Chapter 1

Introduction

“Dad is a man, because he can whistle and only men can whistle.”

My parents kept a notebook where they recorded memorable phrases of my and my sisters
when we were growing up. I was six years old when I claimed the above, believing whistling
abilities determined gender. This inference was informed by the observations I had made
throughout my life. The only people that I had ever heard whistle were my father and
the ‘whistling neighbor’ who we heard all summer long from his backyard. My mother
never whistled, nor had either of my sisters ever demonstrated any whistline abilities. My
experience told me that only men could whistle and that this was a unique differentiating
feature between men and women. Investigative as I was, this theory was tested by trying
to mimic the general facial movements I had observed. I put my lips together, sucked in
my cheeks and blew air out. Without success, I spattered and exhaled air. My conclusion:
those who can whistle are men, those who cannot are women.

1.1 The research cycle

Throughout our lives we formulate theories, collect evidence and update our knowledge
continuously. The theory that only men could whistle resulted in testable expectations,
experimenting and data collection, evidence and finally a conclusion. The data confirmed
my theory, but I did not think of competing theories or whether observing two successes
and four failures was sufficient to confirm the theory. In fact, this particular theory only
required one observation to discard my gender-defining-whistle theory: My kindergarten
teacher, a woman, whistled. With this new knowledge I realized there was something else
that distinguished whistlers from non-whistlers. Was it the ability to get the right shape of
lips and tonge? Other new questions developed. What was the amount force required to
make a difference between air and sound? How do you change notes so you can whistle a
melody? Even though my initial theory was rejected, over the years my knowledge, theories
and questions on whistling-abilities keep increasing.

Six-year old me passed through various stages of the research cycle. Some twenty years
later, the research of four years presented in this dissertation touches upon the research cycle

7



once more. At age six, I unknowingly formulated hypotheses based on expectations from a
personal theory. I was satisfied with six observations that all confirmed this particular theory.
At age six, I unknowingly drew conclusions about whether a phenomenon (whistling-ability)
was present for all men based on the observation of a few cases. At age six, I unknowingly
performed Bayesian updating and continuously learned about, developed and rejected many
more theories. Similar to the whistling example, I believed women could bake pancakes
and braid hair while men could not. I updated my theories when I ate pancakes baked by
my dad and when no apple tree would grow in my stomach after swallowing the seeds.
I did learn how to whistle and though I know men can braid hair but doubt the quality.
Mostly, I learned to be critical of my assumptions and ask questions. Some twenty years
later I investigated the value and importance of these unknowingly taken research steps.
This dissertation contains my latest updates about Bayesian informative hypothesis testing.

1.2 Bayesian informative hypothesis evaluation

The title of this dissertation, The latest update on Bayesian informative hypothesis testing,
refers to its two main topics: informative hypothesis evaluation and Bayesian updating.
This section provides a brief introduction to these topics and how they are connected for
a general framework. Each chapter contains the necessary definitions on these concps In
order to not needlessly repeat definitions and concepts, the more elaborate definitions are
available in the relevant chapters.

1.2.1 Bayesian statistics

Bayesian statistics differs from classical or frequentist statistics in the part of an analysis
that is considered random. Data are analyzed through a statistical model, that is, a collection
of parameters that explain the observed data. In frequentist statistics the probability of
data given a statistical model is determined, e.g. the probability of observing a woman
who whistles, given that only men can whistle. In contrast, Bayesian statistics determines
the probability of a statistical model given the data, e.g. the probability that only men
can whistle, given that you observe a woman who whistles. Bayes’ theorem shows how
knowledge about this probability of interest is updated:

P(A | B) =
P(A) × P(B | A)

P(B)
(Bayes’ theorem) (1.1)

The theorem describes how the probability of A conditional on B, (P(A | B)can be obtained
as a function of P(A), P(B | A) and P(B). In other words, it describes how we can obtain
the conditional probability of A given B, for example a hypothesis A given a dataset B,
using the probabilities of the data B, hypothesis A and the probability of the data given the
hypothesis P(B | A).
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1.2.2 Informative hypothesis testing

Hypotheses are the link between the observed data and the deveped theories. Data are used
to draw conclusions about theories by statistically testing hypotheses. In the classical null
hypothesis significance testing (NHST) a null and an alternative hypothesis H0 and Ha are
considered, that is, the expectation of no effect (H0) or some effect Ha. Many arguments
have been made against the use of this procedure of hypothesis testing, since both H0 and
Ha do not appear to reflect a researchers expectations (e.g., Cohen, 1994; Klugkist, Wesel,
& Bullens, 2011; van de Schoot, Hoijtink, & Romeijn, 2011; Wagenmakers, 2007). Rarely
is the exact absence of an effect expected to be true in the population or is the interest of a
researcher to confirm the presence of any effect. Specific expectations are often evaluated
by means of a posteriori analyses, rather than directly. Constrained hypothesis testing
has been introduced as a way to more directly evaluate the expectations of researchers.
Specifically, Klugkist, Laudy, & Hoijtink (2005), Hoijtink, Klugkist, & Boelen (2008),
Mulder et al. (2009), Hoijtink (2012) developed straighforward methods to evaluate these
constrained hypotheses by means of Bayesian hypothesis tests.

1.2.3 Bayesian hypothesis testing

Bayesian hypothesis testing allows for the specification of any interesting model and the
comparison of multiple theories. Both the use of Bayesian hypothesis testing with a Bayes
factor and the use of informative hypotheses have gained in popularity over the past years
(Mulder & Wagenmakers, 2016). Easy to use software with options for Bayesian analyses
or the inclusion of constrained hypotheses is more accessible (e.g. JASP Team, 2018; or R
packages such as Morey & Rouder, 2018; Gu, Hoijtink, Mulder, & Lissa, 2019; Merkle &
Rosseel, 2018). Consequently, the share of research in the social and behavioral sciences
that adopts Bayesian informative hypothesis testing is slowly increasing. Equation 1.1 tells
us how we can obtain the probability of a single hypothesis. Knowing the probability of one
hypothesis is not particularly useful if the goal is to make a comparison between multiple
hypotheses. By taking a ratio of Equation 1.1 for two different hypotheses we get:

P(A1|B)
P(A2|B)

=
P(A1)
P(A2)

×
P(B|A1)
P(B|A2)

(1.2)

posterior odds = prior odds × Bayes factor

Equation 1.2 shows how posterior odds, the ratio of two posterior probabilities, are obtained
by updating the prior odds, a ratio of two prior probabilities, with the Bayes factor, the
ratio of two marginal distributions (Kass & Raftery, 1995). This Bayes factor is the rate
with which the prior odds are updated, also referred to as the evidence (Morey, Romeijn, &
Rouder, 2016).

1.2.4 Updating

Both the formulation of hypotheses and the computation of evidence for these hypotheses
can continuously be done. A single step of data collection and analysis gives a temporary
answer to the question at hand. The updating of prior to posterior knowledge in Equation
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1.1 and 1.2 can be repeated as more data becomes available. New theories can be developed,
old hypotheses can become outdated. Equation 1.1 shows that knowledge is never final
and with each new piece of information, we learn more about a puzzle with an unknown
number of pieces. All we can do is look at the latest update, and see where we are right
now.

1.3 The latest update

With the increased use of Bayesian informative hypothesis testing, practical, philosophical
and methodological questions arise. One of the arguments in favor of a Bayes factor as
opposed to a p-value is the lack of an arbitrary cut-off for making decisions (Wagenmakers,
2007). The Bayes factor has a meaningful interpretation, namely the rate with which
knowledge is updated. However, practice shows that guidelines and corresponding cut-offs
are developed (e.g. Kass & Raftery, 1995; Wagenmakers, Wetzels, Borsboom, & Maas,
2011). This results in questions: what conclusions can you draw with a Bayes factor and
what does a particular level of evidence mean in practical terms? With the possibility of
evaluating any hypothesis one can think of, comes the problem of choosing the relevant
hypotheses. Which comparisons are interesting and important to make and how can you
make a valuable comparison? The importance of prior distribution and prior probability
specification in Bayesian hypothesis testing needs to be discussed and comes with great
responsibility. Every decision in a Bayesian hypothesis test, much like in a frequentist
hypothesis test, needs to be justified and with little established practice, many ideas exist
about the ‘right’ approach. This dissertation addresses a few of these questions.

One step in the research cycle is to collect data for hypothesis testing. The amount of data
required to answer a research question depends on the value of making wrong conclusions.
The link between sample size, power and error probabilities is well-researched in the NHST
framework. In Bayesian statistics research this relationship is less discussed and the value
of power and unconditional error probabilities are debated. Chapter 2 presents four sample
size determination methods for informative hypothesis testing by means of Bayes factors.
The value of power and (un)conditional error probabilities and their link with sample size
for Bayesian hypothesis tests are discussed.

Another step in the research cycle is to translate the results from a statistical analysis
into a conclusion. The analysis should match the research question to provide a sensible
conclusion. Many hypothesis tests concern the presence and direction of population effects.
However, in practice the conclusions from these hypothesis tests often are at the individual
level. For example, after analyzing the effectiveness of a medication in the population, it
is prescribed to individuals. The average effect does not imply the medicine works for all
individuals. In many situations the main interest is in the individual effects rather than
population effects. Chapters 3 and 4 describe how Bayesian hypothesis testing can be used
to synthesize the results from multiple individual analyses. Bayesian statistics can be used
to continuously add data and sequentially update knowledge about population effects. This
process is called updating. Alternatively, data from multiple individuals can be analyzed
separately and combined to learn about how the homogeneity (similarity) of individual
effects. Chapter 3 presents the methodology and Chapter 4 is a hands-on description for
how to execute such an analysis. For Chapter 2 an R package has been developed, and
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for Chapter 3 an R Shiny application has been developed. Both pieces of software are
presented in Chapter 6.

Chapter 5 discusses the updating cycle in Bayesian statistics and focuses on the starting
point of an updating cycle. The information in a Bayes factor is useful to describe how
we can update our knowledge. However, knowing the rate with which the relative belief
for two hypotheses changes is meaningless if the starting point is unknown. Chapter 5
therefore discusses the importance of prior probabilities and how to specify these for a set
of hypotheses.

Chapters 7 and 8 present applied research where informative hypotheses are tested with
Bayes factors. These are examples of research that commonly are analyzed with NHST
and are thus exemplary in what the possibilities with informative hypothesis testing are.
In Chapter 7 informative hypotheses are formulated to analyze the data from a repeated
measures experiment. Chapter 8 evaluates the presence of a mediated effect at the the
individual level by means of Bayesian informative hypothess tests.
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Chapter 2

The power of informative
hypotheses

by F. Klaassen, H. Hoijtink & X. Gu1

2.1 Introduction

Statistical analyses in behavioral research are often concerned with the comparisons
between groups. For example, Monin, Sawyer, & Marquez (2008) were interested in
the acceptance of moral rebels and conducted an experiment with four conditions. Half
of the participants were asked to write and record a speech supporting a position they
disagreed with (actor condition). After writing the speech, they were either shown a
recording of an alleged previous participant that obeyed the task (actor-obedient) or of
a moral rebel (actor-rebel) who refused to give the speech on the conflicting topic. The
other half of the participants were given the instructions about writing and recording a
speech allegedly given to other participants, but did not have to write a speech themselves
(observer condition). After reading the instructions they too watched either an obedient
previous ‘participant’ (observer-obedient) or a moral-rebel (observer-rebel). After watching
the recording, participants rated how they perceived the person giving the speech.

A common approach is to analyze the resulting data with an ANOVA and test the null
hypothesis that there is no difference between the four groups against the alternative
hypothesis that there is a difference. This analysis does not evaluate any specific predictions
based on theory, and the value of the conclusion of such a hypothesis test can be questioned
(van de Schoot et al., 2011). A prediction can be translated into an informative hypothesis,
that is, a hypothesis that describes the theoretical expectation of the researchers (Gu,
Mulder, Deković, & Hoijtink, 2014; van de Schoot et al., 2011). For example, theory

1Manuscript under review at Psychonomic Bulletin & Review.
Author contributions: FK wrote the paper, R code and executed the simulations. XG and HH conceptualized

the project, discussed progress and provided feedback on writing.
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predicts an interaction between the role of the participant (observer/actor) and the role of
the speaker (rebel/obedient) (Monin et al., 2008). Specifically, moral rebels are expected to
be rejected by actors and appreciated by observers. An informative hypothesis in line with
this theoretical expectation is

H : µobserver-rebel > µactor-obedient > µobserver-obedient > µactor-rebel,

where µ is the average rated acceptance of the speaker in the corresponding condition. In
this hypothesis the four group means are ordered from largest to smallest. A more general
notation of this simple order constrained hypothesis (Kuiper & Hoijtink, 2010) is:

Hi : µ1 > ...µk > ... > µK , (2.1)

where all K group means µk are ordered from large to small, with k = 1, ...,K. Throughout
this paper, the focus is on hypotheses like Hi that describe an ordering of all K group means
from large to small. Note that the concept of informative hypothesis is more general than
constrain combinations of parameters by means of inequalities and equalities. However
this is beyond the scope of this article.

Bayesian statistics can be used to find the best hypothesis from a set of competing
hypotheses. The Bayes factor expresses the relative evidence in the data for two hypotheses
(Kass & Raftery, 1995). Any informative hypothesis Hi can be compared to its complement
Hc, to another hypothesis Hi′ , where i′ , i, or to the unconstrained hypothesis Hu (Hoijtink,
2012, pp. 50–51). The complement of Hi is Hc:

Hc : not Hi, (2.2)

which describes all other possible orderings of the parameters in Hi. A researcher can also
compare Hi to another interesting hypothesis Hi′ , any other ordering of the parameters, for
example:

Hi′ : µ2 > µ1 > ... > µK . (2.3)

Finally, a researcher can choose to compare Hi to Hu, the unconstrained hypothesis:

Hu : µ1, ..., µk, ...µK , (2.4)

where all parameters can take on any value.

The Bayes factor BFic expresses the support in the data for Hi relative to Hci . For example,
when BFic = 5, the support in the data for Hi is 5 times stronger than for Hci . When
BFic = 0.1, the support for Hci is 10 times stronger than for Hi. A Bayes factor can be used
to update prior odds into posterior odds. The prior odds is the ratio of the probability of Hi

relative to the probability of Hi′ before observing the data. The posterior odds is the ratio of
the probability of Hi relative to the probability of Hi′ after observing the data. Posterior
probabilities are also referred to as conditional error probabilities (Berger, Boukai, & Wang,
1997; Hoijtink, 2012, pp. 80–81). If the posterior probabilities for Hi and Hc are .8 and .2,
that is a posterior odds of 4, there is, given the data and prior probabilities, a probability
of .8 that Hi is the best hypothesis and a probability of .2 that Hc is the best hypothesis.
The conditional error probabilities depend on the chosen prior probabilities and the data

14



and provide meaningful information about the probability of a hypothesis after data are
observed.

Unconditional error probabilities are well-known as the alpha-level and beta-level or
the Type I and Type II error probabilities in the context of null-hypothesis significance
testing. The unconditional error probabilities do not depend on the data and can be used to
determine the required sample size to detect a particular effect size prior to observing data.
Unconditional error probabilities are often used for sample size determination purposes in
frequentist analyses, which is not common in Bayesian statistics. The focus in Bayesian
hypothesis testing often lays in the conditional error probabilities. However, prior to
data collection, unconditional error probabilities can provide information about what the
expected strength of evidence is for a particular sample size. This paper will present
methods that use both unconditional and conditional error probabilities to determine the
sample size for the evaluation of informative hypotheses by means of Bayes factors.

Section 2.2 explains how the Bayes factor can be computed and used for comparing
informative hypotheses. Section 2.3 presents an overview available sample size
determination methods for Bayesian hypothesis testing. Different strategies are discussed
that can be used to determine sample size based on unconditional or conditional error
probabilities. In Section 2.4 four sample size determination approaches are introduced
specifically for the comparison of informative hypotheses by means of Bayes factors. Three
types of error (Type I, Type II and indecision error) and the desired level of evidence are
combined. Section 2.5 describes how the methodology is programmed and the simulation
conditions considered to illustrate the four approaches. The results of this simulation are
presented and discussed in Section 2.6, followed by a set of guidelines for sample size
determination in Bayesian informative hypothesis testing. Section 2.7 introduces three
examples to illustrate these guidelines. Finally, Section 2.8 briefly discusses the findings of
this paper.

2.2 Bayes factor

The Bayes factor is a tool for Bayesian hypothesis testing. Bayes factors can be computed
for any pair of hypotheses, and can be used to quantify the evidence in favor of one of
these hypotheses. Bayes factors penalize the fit with the complexity of the hypotheses
under consideration, where the fit describes how well the data support a hypothesis, and the
complexity describes how specific a hypothesis is. The Akaike Information Criterion (AIC)
for example, is based on a similar principle. The AIC penalizes the maximum value of the
likelihood, which is a measure of fit, by the number of parameters, which is a measure of
complexity (Akaike, 1973). BFiu can be expressed as a ratio of the fit fi and the complexity
ci of Hi and expresses the support in the data for Hi relative to Hu (Hoijtink, 2012, pp.
51–52):

BFi1 =
fi
ci
. (2.5)
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Using BFiu and BFcu or BFi′u, Bayes factors can be obtained that express the support in
the data for Hi relative to Hc or Hi′ :

BFic =
BFi1

BFc1
=

fi
ci
/

1 − fi
1 − ci

, (2.6)

BFii′ =
BFi1

BFi′1
=

fi
ci
/

fi′
ci′
. (2.7)

In order to compute the fit and complexity of a hypothesis, the density of the data, and the
prior and posterior distributions of the target parameters are needed. For an ANOVA model,
the density of the data is:

f (y|µ, σ2) =

K∏
k=1

N∏
s=1

1
√

2πσ2
exp(−

1
2

(yks − µk)2

σ2 ), (2.8)

where y = [y11, ..., y1N , ..., yK1, ..., yKN], µ = [µ1, ..., µK], σ2 indicates the within group
variance and is equal for each group, k = 1, 2, . . . , K indicates a group, and s = 1, 2, . . . , N
indicates a person in group k. The sample size, denoted by N, is equal for each group.

Based on Gu et al. (2014) independent non-informative normal prior distributions are used
for the parameters in the hypothesis, that is, the group means:

h(µ) = h(µ1) · · · · · h(µK), (2.9)

with
h(µk) = N(0,∞),

for k = 1, ...,K, in which the prior means are zero and the prior variances approach infinity.

The effect of this non-informative prior distribution on the posterior distribution is so small,
that the posterior depends fully on the data. We use a normal approximation of the posterior
distribution for the group means, that is, the target parameters:

g(µ|y) = g(µ1) · · · · · g(µK), (2.10)

with
g(µk |y) = N(µ̂k, τ̂

2
k),

for k = 1, 2, ...K, in which µ̂k is the estimate of the mean in group k, and τ̂2
k is the squared

standard error of the mean in group k, where

µ̂k =
1
N

N∑
s=1

yks, (2.11)

and

τ̂2
k =

∑N
s=1(yks − µ̂k)2

N · (N − 1)
. (2.12)

The complexity and fit of a hypothesis are based on the prior and posterior distribution.
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The complexity of Hi, ci, describes how specific Hi is. It is the proportion of the prior
distribution in agreement with Hi (Hoijtink, 2012, p. 60):

ci =

∫
µ∈Hi

h(µ)dµ. (2.13)

There are K! unique hypotheses that order all parameters from small to large, each of which
has the same complexity. Consequently, the complexity for hypotheses like Hi is ci = 1/K!,
and for Hc it is cc = 1 − ci (Hoijtink, 2012, p. 60). Note that since Hc is the complement of
Hi, ci + cc = 1.

The fit of Hi, fi, describes how well the data support Hi. It is the proportion of the posterior
distribution in agreement with Hi (Hoijtink, 2012, p. 59):

fi =

∫
µ∈Hi

g(µ|y)dµ

≈

T∑
t=1

Iµt∈Hi/T, (2.14)

where µt is sampled from g(µ|y), Iµt∈Hi is 1 if µt is in agreement with Hi, and 0 otherwise,
and T is the number of posterior samples. Again, since Hc is the complement of Hi, it
follows that fc = 1 − fi. Using the complexity and fit, Bayes factors can be computed.

2.3 Sample size determination

The Bayes factor can be used to compute the conditional probabilities of the hypotheses
under consideration. Often, the goal of hypothesis comparison is to not only describe
the evidence in the data, but to select the best hypothesis from a set. If BF12 = 1.1 for
example, this shows that the evidence is 1.1 times more in favor of H1 relative to H2. This
corresponds to a conditional probability of approximately .52 for H1 and .48 for H2. These
conditional error probabilities not provide any information about the the effect of the sample
size on this conclusion. If the sample size in this example were 10, it seems very possible
that the preference for H1 is due to sampling variance. Alternatively, if the sample size
were 10, 000, the preference for H1 is more likely to be true in the population of interest.
(Adcock, 1997) presents the first available research on the relation between sample size and
the Bayes factor. Amongst others, he discusses the method of (Weiss, 1997).

Weiss (1997) advocates the importance of both conditional and unconditional power, and
investigates different combinations of sample size, conditional and unconditional error
probabilities. One of the approaches considers a cut-off of the Bayes factor such that the
unconditional Type I error probability, that is, the probability that H0 is preferred when Hu

is true, is at the traditional .05. He creates sampling distributions for the Bayes factor for
different sample sizes and true populations under Hu. From these sampling distributions
he then derives the unconditional power. Using a cut-off for the Type I error probability
determines a critical Bayes factor. Alternatively Weiss (1997) proposes to keep the cut-off

of the Bayes factor fixed at 1, because this is a meaningful value, and determine the Type
I and Type II error probabilities for this criterion. Not only does Weiss (1997) consider
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both the conditional and unconditional error probabilities for different sample sizes, he
presents multiple possible strategies for determining the sample size and discusses different
populations to consider. This paper will elaborate on these different approaches. While they
are only limited to the comparison of a null hypothesis to a one- or two sided alternative,
this paper extends to the comparison of informative hypotheses.

De Santis (2004, 2007) present another Bayesian sample size determination on for the
comparison of H0 : µ = 0 with H1 : µ , 0. This method applies a decision criterion
where Bayes factors are only considered decisive if they are smaller than 1

3 or larger than
3. The sample size is determined such that P(BF01 > 3|H0) and P(BF01 <

1
3 |H1) are both

larger than a pre-specified value. In other words, an area of indecision is included in the
determination of sample size that ensures that not both the unconditional and the conditional
error probabilities are at a desired level. This strategy goes further than Weiss (1997), but is
limited in two aspects. First, this approach does not include a limit on the unconditional
probability that no decision is made. In other words, the sample size determination could
potentially lead to a sample that gives a .05 Type I and Type II error probability, and an
indecision probability of .9. In the current paper therefore, this approach is extended with
the possibility to put a critical value on the indecision probability as well. Second, De Santis
(2004, 2007) again only considers a single mean with a null and alternative hypothesis.
Reyes & Ghosh (2013) consider Bayesian sample size determination methods for the
difference between two means. One of their methods determines a critical Bayes factor
such that the average error probability is minimized. The sample size is then determined
such that average of the Type I and Type II error probability is smaller than a specified
cut-off value. This idea will be incorporated in our proposed methods. The focus of these
Bayesian sample size methods is on the null and alternative hypotheses.

Sample size determination for the evaluation of the null hypothesis H0 with an informative
hypothesis Hi using BFi0 is considered by Klugkist, Post, Haarhuis, & Wesel (2014). The
decision criterion used is that Bayes factors larger and smaller than 1 result in conclusions in
favor of Hi and H0 respectively. Using this decision criterion, the sample size is determined
for various effect sizes, such that the traditional Type I error probability is below .05, and
the power is above .80 (Klugkist et al., 2014). Although this article uses order constrained
hypotheses, no elaboration is made on the sample sizes required for the evaluation of Hi

with Hc or with Hi′ . Furthermore, the current research does not include a null hypothesis, so
is focused on the sample size required for comparing informative hypotheses. The current
research extends on this approach by considering not only the Type I and Type II error
probability, but additionally the indecision and average error probabilities.

Other research discussing the relation between sample size and Bayes factors focuses
on knowledge updating (e.g. Rouder, 2014). Specifically, this refers to the sequentially
adding data and computing Bayes factors on this updated dataset to view how the
evidence accumulates to the true hypothesis as more information is added. Schönbrodt &
Wagenmakers (2018) extended this principle and investigated how large a sample should be
to obtain ‘strong’ evidence, that is, to obtain a Bayes factor of a particular size. Multiple
testing is a problem if sample size is determined for a desired level of unconditional error.
However, if sample size is determined for a desired level of evidence there no longer
is an effect of multiple testing and sequential analysis. Including the desired level of
strength of evidence in the planning for sample size is relatively new to the literature on
Bayesian sample size determination. The current research will include both strategies using
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unconditional probabilities as a cut-off, and those using conditional error probabilities to
determine sample size.

Concluding, all available existing strategies for sample size determination are limited
the sense that they do not allow for the evaluation of two order constrained hypotheses.
Hoijtink (2012, pp. 115–118) gives indications of appropriate sample sizes in this situation.
Furthermore, the available papers mostly focus on one particular decision strategy. The
variety in different approaches suggests that which error is the most detrimental to make
can vary between situations. Therefore, we will elaborate on the available research by
developing sample size tables for evaluation of Hi and Hc or Hi and Hi′ using different
decision strategies. Particularly, we will develop four decision criteria for the Bayes factor,
that incorporate both conditional and unconditional error probabilities.

2.4 Methods

All approaches make use of the sampling distributions of the Bayes factors under Hi and Hc,
or under Hi and Hi′ . Approach 1, like in Klugkist et al. (2014) and Weiss (1997), chooses Hi

if BFic > 1 or BFii′ > 1, and chooses Hc if BFic < 1 or Hi′ if BFii′ < 1. Sample sizes will
be determined such that the unconditional error probabilities are acceptably low. Approach
2, like in De Santis (2004) and De Santis (2007), chooses Hi if BFic > 3 or BFii′ > 3,
and chooses Hc if BFic <

1
3 or Hi′ if BFii′ <

1
3 . No decision is made if Bayes factors are

between 1
3 and 3. Again, sample sizes will be determined such that error probabilities are

acceptably low. In Approach 3, the Bayes factor is not used to make a decision, but to
express support for Hi and Hc or Hi′ based on the data. Sample sizes will be determined
such that reasonably high Bayes factors can be expected, for example, 3, 10, or 20.

The sample size needed for the evaluation of Hi versus Hi′ or versus Hc can be determined
such that error probabilities are acceptably low, or the median Bayes factor under the
true hypothesis expresses acceptably strong support. This section will first explain how
sampling distributions of Bayes factors are obtained. Second, each approach is explained in
more detail, by precisely defining error probabilities and the median Bayes factor required.
Finally, it will be described what is meant by acceptably low error probabilities and strong
support. Throughout this section, the comparison of Hi and Hc using BFic is discussed.
The discussion is analogous for Hi and Hi′ , where all comments and notations regarding Hc

can be replaced with corresponding ones regarding Hi′ .

All approaches in this paper make use of the sampling distributions of Bayes factors.
Amongst others, the effect sizes under Hi and under Hc need to be defined to obtain the
sampling distributions. In this paper, Cohen’s d, the standardized difference between two
means, is used as a measure of effect size(Cohen, 1988, p. 276). The effect size dHi under
Hi is the standardized difference between the largest and the smallest mean under Hi.

dHi =
µ1 − µK

σ
, (2.15)

where µ1 is the largest mean, and µK is the smallest mean under Hi. The effect size dHc

under Hc is the standardized difference between the largest and the smallest population
mean under Hc. For example, Figure 2.1 displays hypothetical sampling distributions of
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BFic under Hi and under Hc, given N = 50, dHi = .2, and dHc = .2. These distributions
represent the values of the Bayes factors observed if we repeatedly sample from populations
under Hi and Hc. The procedure to obtain sampling distributions will be explained in full
detail in Section 2.5.

2.4.1 Approach 1

The decision criterion used in Approach 1 is that Hi is preferred when BFic is larger than
1, and Hc is preferred when BFic is smaller than 1 (Klugkist et al., 2014; Weiss, 1997) .
In Figure 2.1a, the vertical line at BFic = 1 indicates the decision criterion used in this
approach: obtaining BFic > 1 results in the decision that the data support Hi, and BFic < 1
results in the decision that the data support Hc.

The vertical line marks two error probabilities. The first, the probability of observing
BFic < 1 when Hi is true, P(BFic < 1|Hi), is the probability of supporting Hc when Hi is
true. In the remainder of this paper, this probability will be referred to as a Type i error
probability. The second error probability is that of observing BFic > 1 when Hc is true
denoted by P(BFic > 1|Hc), that is, support for Hi when Hc is true. This will be referred to
as Type c error probability. The average of Type i and Type c error probabilities will be
called the Decision error probability which is similar to the average error probability used
by Reyes & Ghosh (2013).

(a) N = 50 and dHi = .2. (b) N = 50 and dHi = .5. (c) N = 100 and dHi = .2.

Figure 2.1. Error probabilities for Approach 1. Hypothetical sampling distributions of BFic

under Hi and Hc, given sample size N and effect sizes dHi and dHc . Note that dHc = .2 in
each figure.

Figure 2.1b, if the effect size under Hi in Figure 2.1a increases, the sampling distribution
under Hi shifts further away from the decision criterion, thus the Type i error decreases. As
can be seen in Figure 2.1c, if the group sample size in Figure 2.1a increases, both Type i
and Type c error decrease in this situation. For Approach 1, sample size will be determined
such that the Type i, Type c, or Decision error probability is acceptably low.

2.4.2 Approach 2

The decision criterion used in Approach 2 allows for indecision. Kass & Raftery (1995)
have argued that Bayes factors between 1

3 and 3 express too little support to prefer either
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hypothesis. In Approach 2, like De Santis (2004) and De Santis (2007), this distinction is
used by deciding that Hi is preferred for Bayes factors larger than 3 and deciding that Hc

is preferred for Bayes factors smaller than 1
3 . For Approach 2, Type i error probability is

expressed by P(BFic <
1
3 |Hi) and Type c error probability by P(BFic > 3|Hc). The average

of Type i and Type c is the Decision error probability. An additional probability in this
approach is that of not making a decision:

P( 1
3 < BFic < 3) =

P( 1
3 < BFic < 3|Hi) + P( 1

3 < BFic < 3|Hc)
2

,

which is called the Indecision probability.

(a) N = 50 and dHi = .2. (b) N = 50 and dHi = .5. (c) N = 100 and dHi = .2.

Figure 2.2. Error probabilities for Approach 2. Hypothetical sampling distributions of BFic

under Hi and Hc, for sample size N and effect sizes dHi and dHc . Note that dHc = .2 in each
figure. The average of the area between BFic = 1

3 and BFic = 3 under Hi and the area
between 1

3 and BFic = 3 under Hc, is the Indecision probability.

Figure 2.2 shows hypothetical sampling distributions of BFic under Hi and Hc and the error
probabilities under Approach 2. As can be seen in Figure 2.2b, if the effect size under
Hi in Figure 2.2a is increased, the Type i error probability decreases, while the Type c
error probability remains constant. In Figure 2.2b it can also be seen that the Indecision
probability decreases with the increased effect size. As can be seen in Figure 2.2c, if the
sample size in Figure 2.2a is increased, the Type i and Type c error probabilities decrease.
Since for both distributions, the size of the area between 1

3 and 3 decreases, the Indecision
probability also decreases. For Approach 2, sample size will be determined such that the
Type i, Type c, or the Decision error probability is acceptably low. Based on the determined
sample size and the decision criterion Indecision probability can be computed, but not
controlled.

2.4.3 Approach 2b

Note that the Indecision probability can be quite large in Approach 2, which might
be undesirable for a researcher. Therefore, the situation in which a researcher wants
to determine sample size such that the Indecision probability is acceptably low is also
considered. We will refer to this approach by Approach 2b. In contrast to Approach 2, for
Approach 2b sample size is determined such that the Indecision probability is controlled.
Based on the sample size and decision criterion, the error probabilities can be determined,

21



but not controlled.

2.4.4 Approach 3

Approach 3 is different from Approach 1 and 2, because it does not rely on error probabilities
or on a fixed decision criterion. In the sampling distributions under Hi and under Hc the
median Bayes factor can be determined. These medians are an indication of the size of the
Bayes factors that can be expected, given N, dHi , and dHc . The median was used, because it
has the nice interpretation that exactly 50% of the distribution of Bayes factors is larger
than the median, and 50% is smaller.

Figure 2.3 shows hypothetical sampling distributions of BFic under Hi and Hc. As can be
seen in Figure 2.3a, each of the distributions is marked with a line, indicating the median
value of that distribution. Note that in Approach 3, a researcher can choose a required
value for the median Bayes factor under Hi or under Hc. As can be seen in Figure 2.3b, if
the effect size in Figure 2.3a increases, the median Bayes factor under Hi increases, while
the median Bayes factor under Hc remains constant. As can be seen in Figure 2.3c, if the
sample size in Figure 2.3a increases, the median Bayes factor under Hi increases, while the
median Bayes factor under Hc decreases. For Approach 3, sample size will be determined
such that the median Bayes factor under Hi is of a required size, B, or the median Bayes
factor under Hc is of a required size, 1/B.

(a) N = 50 and dHi = .2. (b) N = 50 and dHi = .5. (c) N = 100 and dHi = .2.

Figure 2.3. Median Bayes factors for Approach 3. Hypothetical sampling distributions of
BFic under Hi and Hc, given sample size N and effect size dHi . Note that dHc = .2 in each
figure.

2.4.5 Critical values

Table 2.1 displays the critical values for the error probabilities, Indecision probability, and
median Bayes factor considered in this paper. Note that traditionally in null hypothesis
significance testing, Type I and Type II error probabilities are usually set at .05 and .2,
resulting in an average error probability of .125. By limiting ourselves to Decision error
probabilities of .1, .05, and .025 for Approach 1 and 2 (see Table 2.1), relatively strict
cut-off values are used. We chose to do so, to respond to the replication crisis in social
sciences. This crisis is partially due to publication of false positives (see for example
Pashler & Wagenmakers (2012) and Thompson (2004)), which are partly caused by too
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lenient Type I error rates. By using strict error probabilities, we determine sample sizes that
have a relatively high probability of rendering correct results. For the Indecision probability
in Approach 2b, .3, .2, and .1 are considered. Indecision probabilities larger than .3 have not
been considered because then studies remain undecided too often. Furthermore, Indecision
probabilities smaller than .1 were not considered, because then the Indecision probability
becomes too small, and the situation resembles Approach 1 too much.

In Approach 3, 3, 10, and 20 are considered for B, roughly based on an indication of
strength of support by Kass & Raftery (1995). A B of 3 implies a required median Bayes
factor of 3 if Hi is true, and implies a required median Bayes factor of 1/B = 1/3 if Hc is
true. Note that a researcher could decide that both the Bayes factor if Hi is true and the
Bayes factor if Hc is true, should be of a required size. This is done by determining the
sample size such that the median Bayes factor under Hi is B, and the sample size such
that the median Bayes factor under Hc is 1/B. The largest of these two sample sizes is the
required sample size.

Table 2.1
Critical error probabilities and critical B

Approach Critical values
1 and 2 Error probability .1 .05 .025
2b Indecision probability .3 .2 .1
3 B 3 10 20

2.5 Simulation

Sample size tables are determined through simulations. The simulations are programmed
and carried out in R (R Core Team, 2013). The hypotheses considered in this paper are
Hi, Hc, and Hi′ , like in Equations 2.1–2.2, with K = 2, 3, 4. The R code computes BFic or
BFii′ , based on samples from populations under Hi and Hc or under Hi and Hi′ . The first
three subsections describe in detail how the populations under Hi, Hc, and Hi′ are specified.
These are the first steps of the simulation procedure. Section 2.5.4 gives a brief description
of the entire simulation procedure by means of an example.

2.5.1 Specify Hi and effect size dHi

First, a population under Hi needs to be specified. The population is dependent on the
number of groups under Hi, and on effect size dHi . As was indicated before, the effect size
considered in this paper is Cohen’s d. Based on Cohen’s definition of small, medium, and
large effect sizes, dHi can take on the values 0.2, 0.5, and 0.8 (Cohen, 1992). The group
standard deviation σk is 1, for k = 1, 2, ...,K, and the smallest ordered mean is equal to
0. The difference between the first and the last ordered mean is described by dHi , and
intermediate means are equally spaced between 0 and dHi . Table 2.2 shows the population
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means for K = 2, 3, 4. If Hi is compared to Hc, dHi = 0.2, 0.5, and 0.8 are considered. If Hi

is compared to Hi′ , dHi = 0.2 and 0.5 are considered.

Note that because of our definition of effect size, the difference between each pair of means
in a hypothesis for some effect size, varies over K. For example, for K = 3, and dHi = .2, the
standardized difference between each pair of means is 0.1, while for K = 4, the difference
is .067. We believe that by controlling the effect size over the difference between the first
and the last mean, realistic mean orderings can be expressed. For example, for K = 4, it
would be unrealistic to consider an effect size of 0.8 between each pair of means, because it
would result in a standardized difference of 2.4 between the first and the last ordered mean.
Although we believe our choices for effect size are realistic, we also acknowledge that we
are being strict by considering rather small differences between pairs of means like .067.

Table 2.2
Population means given d

K d µ1 µ2 µ3 µ4

0.2 0.2 0 - -
2 0.5 0.5 0 - -

0.8 0.8 0 - -
0.2 0.2 0.1 0 -

3 0.5 0.5 0.25 0 -
0.8 0.8 0.4 0 -
0.2 0.2 0.133 0.067 0

4 0.5 0.5 0.333 0.167 0
0.8 0.8 0.533 0.267 0

Note. d can be dHi , dHc , or dHi′
. The means are labelled such that they match the ordering of

means in Hi. The labels can be rearranged such that they match Hc or Hi′ . For example, if K = 3,
dHi′

= .2, and Hi′ : µ3 > µ2 > µ1, the populations means will be µ3 = .2, µ2 = .1, and µ1 = 0.

2.5.2 Specify Hc and effect size dHc

If Hi is evaluated with Hc, a population under Hc needs to be specified. The hypothesis
Hc is the complement of Hi, indicating that every ordering of means not in Hi can be true.
For K = 2, only one other ordering than that under Hi is possible, but five orderings are
possible for K = 3, and 23 for K = 4. Table 2.3 shows all options of ordered means under
Hc for K = 2, 3, and three examples for K = 4. As can be seen for K = 3, the orderings
violate Hi in different ways. These violations are classified as small, medium, and large.
An example of a small violation is a change in the order of only one pair of means, and an
example of a large violation is a complete reversal of the ordering of means under Hi.

If a researcher is comparing Hi and Hc, he is testing an informative hypothesis Hi against its
complement Hc, that is, he is testing one theory. The required sample size should be such
that it can detect any deviation from his theory that is possible under Hc. Thus, additionally
to a small effect size, researchers should always consider small violations under Hc. For
a complete overview, this paper does present sample sizes required for medium and large
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violations, too. Only dHc = 0.2 is considered. By doing so, the required sample sizes
are sufficient to detect small deviations from Hi. We assume that if a researcher wants to
evaluate Hi with Hc, he wants to be able to detect any deviation from his theory, specified in
Hi. A small effect size under Hc renders a sample size sufficient to detect small deviations.

Table 2.3
Examples of ordered population means under Hc

K Ordering Violation of Hi

2 µ2 > µ1 -

3

µ1 > µ3 > µ2 small ∗
µ2 > µ1 > µ3 small
µ2 > µ3 > µ1 medium ∗
µ3 > µ1 > µ2 medium
µ3 > µ2 > µ1 large∗

4
µ1 > µ2 > µ4 > µ3 small ∗
µ2 > µ3 > µ1 > µ4 medium ∗
µ4 > µ3 > µ2 > µ1 large ∗

Note. For K = 4 only a selection of ordered means is presented. An ∗ indicates that this ordering
is used under Hi′ . Note that dHc = .2, and dHi′

= .2 or .5.

2.5.3 Specify Hi′ and effect size dHi′

If Hi is evaluated with Hi′ , a population under Hi′ needs to be specified. To specify
a population under Hi′ , first a choice needs to be made for what ordering of means is
considered under Hi′ . Any ordering of means that is possible under Hc could be used as Hi′ .
In this paper, one ordering of means with a small violation of Hi is considered, one with a
medium violation, and one with a large violation, for K = 3, 4. In Table 2.3 the orderings
considered for Hi′ are marked with an asterisk.

If Hi is compared with Hi′ , .2 and .5 are considered for both dHi and dHi′ . We do so, because
if a researcher wants to evaluate Hi with Hi′ , he might value these two hypotheses equally.
He can expect that a population under Hi is true, with for example an effect size of .5, but
at the same time also consider a population under Hi′ , with an effect size of .5.

2.5.4 Simulation procedure

This section describes the steps taken in the simulation procedure by means of an example.
Figure 2.4 displays the simulation procedure, and highlights the choices made in the
example.

1. Specify K, the number of groups, and the informative hypotheses considered: Hi,
and Hc or Hi′ . For this example, K = 3, Hi : µ1 > µ2 > µ3, which is compared with
Hc : not Hi.

2. Specify the effect sizes: dHi and dHc or dHi′ . For this example, dHi = .2 and dHc = .2.
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3. Determine the population means based on K, the effect sizes, and the hypotheses.
As indicated before, throughout this paper, the group standard deviation is set to
1. If Hc is considered, the simulations have to be run in turn for each population
mean ordering possible under Hc, using the same K, hypotheses, and effect sizes.
This continues until all orderings have been considered. In the example, the second
ordering from Table 2.3 is considered. The population means follow from Table 2.2.

4. Specify a starting group sample size N. In this example and for all simulations the
starting group sample size is 2.

5. Sample J datasets using the population means and standard deviation, and sample
size N. For all simulations, J = 10, 000.

6. Compute the complexity and fit using Equation 2.13–2.14. Compute BFic or BFii′ ,
using Equation 2.6 or 2.7. Since Hi is compared with Hc in this example, BFic is
computed.

7. Compute the appropriate error probabilities, Indecision probability and the median
Bayes factor for Approaches 1–3, based on the Bayes factors. Note that the Type i
and Type c error probabilities are computed separately for Approach 1 and Approach
2, because of the different decision criteria (see Figure 2.1–2.3).

8. Increase the group sample size in Step 4 by 1, until N = 1, 000, and repeat Steps 5–8.

Figure 2.4. Example of the simulation procedure.

Based on the simulations the error probabilities and median Bayes factors for every group
sample size from N = 2 to N = 1, 000 are known. The required sample size can be
determined based on the type and size of error one is willing to make (Approaches 1, 2, and
2b), or on the median Bayes factor (Approach 3). The critical error probabilities and median
Bayes factors used are those presented in Table 2.1. If Hc is considered, the required sample
size is determined for each of the orderings. Then, the orderings are grouped by violation
size, and the average for each of these groups is computed. Thus, if two orderings exist
with a small violation size, the average of the required sample sizes for these orderings is
the required sample size for small violations.
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2.6 Results

Tables 2.4–2.15 contain the required group sample sizes based on the simulations for each
of the approaches. Separate tables are presented for the comparison of Hi and Hc, and for
the comparison of Hi and Hi′ . The tables and the examples can contain very small required
sample sizes. Note that it is advised to use a group sample size of at least 10, even if a table
or an example suggests a smaller sample size. We provide a minimum, because inferences
based on small sample sizes are susceptible to outliers. Sections 2.6.1–2.6.4 illustrate by
means of brief examples how each table can be used. Section 2.6.5 interprets these tables.
Note that because Sections 2.6.1–2.6.4 are to some extent repetitive, it may very well be
that you want to skip to Section 2.6.5.

2.6.1 Approach 1

Tables 2.4 and 2.5 show the required group sample sizes using Approach 1, with K = 2, 3, 4,
for the evaluation of Hi and Hc with BFic, and with K = 3, 4, for the evaluation of Hi and
Hi′ with BFii′ .

Example 1.1 Suppose a researcher wants to evaluate Hi with Hc, with K = 3. The researcher
wants to control the Decision error probability at .05. He specifies dHi = .5, dHc = .2, and
expects even small violations to be possible under Hc. As can be seen in Table 2.4, the
required sample size is 977. Suppose this researcher did not consider Hc, but Hi′ with a
small deviation of Hi. As can be seen in Table 2.5, the required sample size is 327.

Example 1.2 Suppose a researcher wants to evaluate Hi with Hc, with K = 3. The researcher
wants to control the Type c error probability at .1. He specifies dHi = .2, dHc = .2, and
expects that only large violations are possible under Hc. As can be seen in Table 2.4, the
required sample size is 54. Suppose this researcher did not consider Hc, but Hi′ with a large
deviation of Hi. As can be seen in Table 2.5, the required sample size is 81.

Example 1.3 Suppose a researcher wants to evaluate Hi with Hc, with K = 4. The researcher
wants to control the Type i error probability at .025. He specifies dHi = .2, dHc = .2. As
can be seen in Table 2.4, the required sample size is 443. Suppose this researcher did
not consider Hc, but Hi′ . As can be seen in Table 2.5, the required sample size is larger
than 1, 000 if Hi′ was specified with a small violation of Hi, the sample size is 575 with a
medium violation, and 169 with a large violation.
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2.6.2 Approach 2

Tables 2.6 and 2.7 show the required group sample sizes using Approach 2, with K = 2, 3, 4,
for the evaluation of Hi and Hc with BFic, and with K = 3, 4, for the evaluation of Hi and
Hi′ with BFii′ . Tables 2.8 and 2.9 present the corresponding Indecision probabilities.

Example 2.1 Suppose a researcher wants to evaluate Hi with Hc, with K = 3. The researcher
wants to control the Decision error probability at .05. He specifies dHi = .5, dHc = .2, and
expects even small violations to be possible under Hc. As can be seen in Tables 2.6 and 2.8,
the required sample size is 451, and the Indecision probability is .2. Suppose this researcher
did not consider Hc, but Hi′ with a small deviation of Hi. As can be seen in Table 2.7 and
2.9, the required sample size is 64, and the Indecision probability is .363.

Example 2.2 Suppose a researcher wants to evaluate Hi with Hc, with K = 3. The researcher
wants to control the Type c error probability at .1. He specifies dHi = .2, dHc = .2, and
expects that only large violations are possible under Hc. As can be seen in Table 2.6 and 2.8,
the required sample size is 3, and the Indecision probability is .435. Suppose this researcher
did not consider Hc, but Hi′ with a large deviation of Hi. As can be seen in Table 2.7 and
2.9, the required sample size is 34, and the Indecision probability is .256.

Example 2.3 Suppose a researcher wants to evaluate Hi with Hc, with K = 4. The researcher
wants to control the Type i error probability at .025. He specifies dHi = .2, dHc = .2. As can
be seen in Table 2.6 and 2.8, the required sample size is 233, and the Indecision probability
is .160. Suppose this researcher did not consider Hc, but Hi′ . As can be seen in Table 2.7
and 2.9, the required sample size is 628 if Hi′ was specified with a small violation of Hi

with an Indecision probability of .429, and the required sample size is 318 with a medium
violation with an Indecision probability of .265, and a sample size of 114 with a large
violation with an Indecision probability of .144.
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Table 2.5
Required group sample sizes for Approach 1 using Hi′

Error probability
.1 .05 .025 .1 .05 .025

K dHi′
dHi = .2 .5 .2 .5 .2 .5 - - -

.2 318 147 531 327 731 531 318 531 731
s .5 147 51 327 88 531 117 51 88 117

- 318 51 531 88 731 117

.2 103 54 180 108 252 180 108 180 249
3 m .5 54 18 103 29 180 40 17 30 41

- 103 18 180 29 252 40

.2 81 41 135 81 192 135 81 135 192
l .5 41 14 81 22 135 31 14 22 31

- 81 14 135 22 192 31
.2 725 338 * 725 * * 725 * *

s .5 338 115 725 189 * 273 115 189 273

- 725 115 * 189 * 273

.2 247 111 399 233 562 382 228 382 540
4 m .5 124 40 257 63 415 91 38 64 88

- 257 41 415 63 575 91

.2 73 37 124 73 169 124 73 124 169
l .5 36 13 73 20 123 30 13 20 30

- 73 13 123 20 169 28

Note. Non shaded areas give the sample size needed to control the Decision error probability, ’ gives the sample size needed

to control the Type i error probability, and ’ gives the sample size needed to control the Type i′ error probability. Let *
denote group sample sizes larger than 1, 000. Small, medium, and large violations under Hi′ are denoted by s, m, and l.
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Table 2.7
Required group sample sizes for Approach 2 using Hi′

Error probability
.1 .05 .025 .1 .05 .025

K dHi′
dHi = .2 .5 .2 .5 .2 .5 - - -

.2 46 17 147 64 291 147 46 147 291
s .5 17 9 64 29 147 49 9 29 49

- 46 9 147 29 291 49

.2 42 19 86 46 147 88 42 86 143
3 m .5 18 8 45 16 86 24 8 15 25

- 42 8 86 17 147 24

.2 34 16 72 35 115 72 34 72 115
l .5 16 7 35 13 72 19 7 13 19

- 34 7 72 13 115 19
.2 69 26 313 133 628 327 69 313 628

s .5 26 15 133 51 327 104 15 51 104
- 69 15 313 51 628 104

.2 76 30 176 87 314 174 68 167 294
4 m .5 31 14 91 30 189 51 14 30 49

- 80 14 189 33 318 52

.2 40 19 76 43 114 76 40 76 114
l .5 19 8 43 13 76 20 8 13 20

- 40 8 76 14 114 20

Note. Non shaded areas give the sample size needed to control the Decision error probability, ’ gives the sample size needed

to control the Type i error probability, and ’ gives the sample size needed to control the Type c error probability. Let *
denote group sample sizes larger than 1, 000. Small, medium, and large violations under Hi′ are denoted by s, m, and l.

32



Ta
bl

e
2.

8
In

de
ci

si
on

pr
ob

ab
ili

tie
s

fo
r

A
pp

ro
ac

h
2

us
in

g
H

c

E
rr

or
pr

ob
ab

ili
ty

.1
.0

5
.0

25
.1

.0
5

.0
25

K
d H

i
=

.2
.5

.8
.2

.5
.8

.2
.5

.8
-

2
.4

22
.3

84
.3

43
.3

28
.2

82
.2

26
.2

62
.1

81
.1

64
.2

26
.1

64
.1

31
.4

22
.4

23
.3

77
.3

28
.3

84
.3

67
.2

62
.3

32
.3

43

3

s
.3

89
.3

75
.4

16
.2

36
.2

00
.2

00
.1

62
.1

49
.1

49
.2

00
.1

49
.1

09
m

.4
77

.4
72

.4
37

.3
88

.3
86

.3
44

.2
86

.2
68

.2
25

.4
35

.2
26

.1
59

l
.4

55
.4

59
.4

41
.3

71
.3

85
.3

63
.2

71
.3

07
.2

71
.4

35
.3

16
.2

00
.3

80
.4

49
.4

21
.2

92
.3

88
.3

95
.1

87
.3

30
.3

38

4

s
*

*
*

*
*

*
*

*
*

*
*

*
m

.4
27

.4
21

.4
00

.2
97

.2
42

.2
26

.1
99

.1
58

.1
52

.2
59

.1
52

.1
03

l
.3

95
.4

07
.3

89
.3

11
.3

40
.3

17
.2

19
.2

41
.2

19
.3

40
.2

69
.1

55
.3

40
.3

79
.3

81
.2

40
.3

37
.3

25
.1

60
.2

73
.2

80

N
ot

e.
N

on
sh

ad
ed

ar
ea

s
gi

ve
th

e
In

de
ci

si
on

pr
ob

ab
ili

ty
be

lo
ng

in
g

to
th

e
sa

m
pl

e
si

ze
ne

ed
ed

to
co

nt
ro

lt
he

D
ec

is
io

n
er

ro
r

pr
ob

ab
ili

ty
,

’
gi

ve
s

th
e

In
de

ci
si

on
pr

ob
ab

ili
ty

be
lo

ng
in

g
to

th
e

sa
m

pl
e

si
ze

ne
ed

ed
to

co
nt

ro
lt

he
Ty

pe
ie

rr
or

pr
ob

ab
ili

ty
,a

nd
’

gi
ve

s
th

e
In

de
ci

si
on

pr
ob

ab
ili

ty
be

lo
ng

in
g

to
th

e
sa

m
pl

e
si

ze
ne

ed
ed

to
co

nt
ro

lt
he

Ty
pe

c
er

ro
rp

ro
ba

bi
lit

y.
L

et
*

de
no

te
gr

ou
p

sa
m

pl
e

si
ze

s
la

rg
er

th
an

1,
00

0.
Sm

al
l,

m
ed

iu
m

,a
nd

la
rg

e
vi

ol
at

io
ns

un
de

r
H

c
ar

e
de

no
te

d
by

s,
m

,a
nd

l.
In

de
ci

si
on

pr
ob

ab
ili

ty
is

de
te

rm
in

ed
ba

se
d

on
th

e
sa

m
pl

e
si

ze
fo

re
ac

h
or

de
ri

ng
of

po
pu

la
tio

n
m

ea
ns

un
de

r
H

c,
an

d
th

en
av

er
ag

ed
an

d
pr

es
en

te
d

in
vi

ol
at

io
n

ca
te

go
ri

es
.N

ot
e

th
at

d H
c

=
.2

fo
ra

ll
sa

m
pl

e
si

ze
s.

33



Ta
bl

e
2.

9
In

de
ci

si
on

pr
ob

ab
ili

ty
fo

r
A

pp
ro

ac
h

2
us

in
g

H
i′

E
rr

or
pr

ob
ab

ili
ty

.1
.0

5
.0

25
.1

.0
5

.0
25

K
d H

i′
d H

i
=

.2
.5

.2
.5

.2
.5

-
-

-
.2

.5
19

.5
06

.4
01

.3
63

.2
89

.2
33

.5
31

.4
67

.4
03

s
.5

.5
06

.4
96

.3
63

.3
81

.2
33

.2
81

.4
96

.3
81

.2
81

-
.5

31
.4

96
.4

67
.3

81
.4

03
.2

81
3

m
.2

.2
79

.2
50

.2
04

.1
59

.1
28

.1
04

.3
08

.2
51

.2
22

3
m

.5
.2

52
.2

64
.1

61
.1

84
.1

06
.1

29
.2

64
.1

69
.1

29
-

.3
04

.2
64

.2
65

.1
89

.2
21

.1
23

.2
.2

42
.2

11
.1

74
.1

39
.1

15
.0

89
.2

56
.2

22
.1

99
l

.5
.2

11
.2

14
.1

39
.1

49
.0

89
.1

09
.2

14
.1

49
.1

09
-

.2
56

.2
14

.2
22

.1
49

.1
99

.1
09

.2
.5

93
.5

66
.4

28
.3

90
.2

98
.2

45
.5

92
.5

12
.4

29
s

.5
.5

66
.5

57
.3

89
.4

20
.2

45
.2

93
.5

57
.4

20
.2

93
-

.5
92

.5
57

.5
12

.4
20

.4
29

.2
93

.2
.3

52
.3

23
.2

38
.2

00
.1

47
.1

23
.3

78
.3

17
.2

57
4

m
.5

.3
18

.3
24

.1
94

.2
33

.1
21

.1
50

.3
24

.2
18

.1
46

-
.3

75
.3

24
.3

16
.2

33
.2

65
.1

54
.2

.1
83

.1
47

.1
20

.0
90

.0
80

.0
61

.1
87

.1
68

.1
44

l
.5

.1
47

.1
52

.0
90

.1
11

.0
61

.0
71

.1
52

.1
11

.0
71

-
.1

88
.1

52
.1

68
.1

05
.1

44
.0

71

N
ot

e.
N

on
sh

ad
ed

ar
ea

s
gi

ve
th

e
In

de
ci

si
on

pr
ob

ab
ili

ty
be

lo
ng

in
g

to
th

e
sa

m
pl

e
si

ze
ne

ed
ed

to
co

nt
ro

lt
he

D
ec

is
io

n
er

ro
r

pr
ob

ab
ili

ty
,

’
gi

ve
s

th
e

In
de

ci
si

on
pr

ob
ab

ili
ty

be
lo

ng
in

g
to

th
e

sa
m

pl
e

si
ze

ne
ed

ed
to

co
nt

ro
lt

he
Ty

pe
ie

rr
or

pr
ob

ab
ili

ty
,a

nd
’

gi
ve

s
th

e
In

de
ci

si
on

pr
ob

ab
ili

ty
be

lo
ng

in
g

to
th

e
sa

m
pl

e
si

ze
ne

ed
ed

to
co

nt
ro

lt
he

Ty
pe

c
er

ro
rp

ro
ba

bi
lit

y.
L

et
*

de
no

te
gr

ou
p

sa
m

pl
e

si
ze

s
la

rg
er

th
an

1,
00

0.
Sm

al
l,

m
ed

iu
m

,a
nd

la
rg

e
vi

ol
at

io
ns

un
de

r
H

i′
ar

e
de

no
te

d
by

s,
m

,a
nd

l.

34



Table 2.10
Required group sample sizes for Approach 2b using Hc

Indecision probability
.3 .2 .1

K dHi = .2 .5 .8 .2 .5 .8 .2 .5 .8
2 60 19 9 108 44 30 182 108 108

s 304 74 34 567 427 427 * * *
3 m 119 40 20 194 72 46 325 154 141

l 90 31 16 158 55 32 281 102 83

s 294 67 29 * 366 353 * * *
4 m 218 55 23 367 177 154 622 492 491

l 102 32 15 181 59 33 324 124 101

Note. Let * denote group sample sizes larger than 1, 000. Small, medium, and large violations under Hc are denoted by s, m,
and l. Sample size is determined based on the allowed Indecision probability for each ordering of population means under
Hc, and then averaged and presented in violation categories. Note that dHc = .2 for all sample sizes.

2.6.3 Approach 2b

Tables 2.10 and 2.11 show the required group sample sizes using Approach 2b, with
K = 2, 3, 4, for the evaluation of Hi and Hc with BFic, and with K = 3, 4, for the evaluation
of Hi and Hi′ with BFii′ . Tables 2.12 and 2.13 depict the corresponding Type i, Type c or
Type i′, and Decision error probability.

Example 2b.1 Suppose a researcher wants to evaluate Hi with Hc, with K = 3. The
researcher wants to control the Indecision probability at .2. He specifies dHi = .5, dHc = .2,
and expects even small violations to be possible under Hc. As can be seen in Table 2.10
and 2.12, the required sample size is 427, and the Type i error probability is smaller than
.001, Type c is .112, and the Decision error probability is .056. Suppose this researcher did
not consider Hc, but Hi′ with a small deviation of Hi. As can be seen in Table 2.11 and
2.13, the required sample size is 190, and the Type i error probability is .001, Type c is
.044, and the Decision error probability is .023.

Example 2b.2 Suppose a researcher wants to evaluate Hi with Hc, with K = 3. The
researcher wants to control the Indecision probability at .1. He specifies dHi = .2, dHc = .2,
and expects that only large violations are possible under Hc. As can be seen in Table 2.10
and 2.12, the required sample size is 281, and the Type i error probability is .008, Type c is
smaller than .001, and the Decision error probability is .004. Suppose this researcher did
not consider Hc, but Hi′ with a large deviation of Hi. As can be seen in Table 2.11 and 2.13,
the required sample size is 61, and the Type i error probability is .059, Type c is smaller
than .001, and the Decision error probability is .030.

Example 2b.3 Suppose a researcher wants to evaluate Hi with Hc, with K = 4. The
researcher wants to control the Indecision probability at .3. He specifies dHi = .2, dHc = .2,
and expects medium violations of Hi under Hc. As can be seen in Table 2.10 and 2.12,
the required sample size is 55, and the Type i error probability is .012, Type c is .118, and
the Decision error probability is .065. Suppose this researcher did not consider Hc, but
Hi′ with a medium violation of Hi. As can be seen in Table 2.11 and 2.13, the required
sample size is 2 and the Type i error probability is .231, Type c is .383, and the Decision
error probability is .307.
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Table 2.11
Required group sample sizes for Approach 2b using Hi′

Indecision probability
.3 .2 .1

K dHi′
dHi = .2 .5 .2 .5 .2 .5

3

s .2 266 97 442 190 746 447
.5 97 44 190 71 447 118

m .2 2 2 87 31 180 92
.5 2 2 31 14 91 30

l .2 2 2 55 19 127 61
.5 2 2 19 9 61 21

4

s .2 600 222 990 443 * 990
.5 222 100 443 160 990 270

m .2 2 2 223 86 428 227
.5 2 2 87 37 239 68

l .2 2 2 2 2 93 38
.5 2 2 2 2 38 16

Note. Let * denote group sample sizes larger than 1, 000. Small, medium, and large violations under Hi′ are denoted by s, m,
and l.

Table 2.12
Error probabilities for Approach 2b using Hc

Indecision probability
.3 .2 .1

K dHi = .2 .5 .8 .2 .5 .8 .2 .5 .8
i .038 .014 .008 .014 .001 .000 .005 .000 .000

2 c .038 .102 .132 .014 .051 .075 .005 .014 .014
DE .038 .058 .070 .014 .026 .037 .005 .007 .007
i .008 .003 .002 .001 .000 .000 * * *

s c .142 .201 .192 .080 .112 .112 * * *
DE .075 .102 .097 .041 .056 .056 * * *

i .042 .010 .008 .021 .003 .000 .006 .000 .000
3 m c .016 .045 .066 .006 .027 .041 .001 .010 .012

DE .029 .028 .037 .014 .015 .021 .004 .005 .006

i .056 .020 .013 .028 .005 .002 .008 .001 .000
l c .009 .027 .047 .002 .018 .024 .000 .005 .008

DE .033 .024 .030 .015 .012 .013 .004 .003 .004
i .015 .007 .006 * .000 .000 * * *

s c .364 .273 .212 * .364 .365 * * *
DE .190 .140 .109 * .182 .182 * * *

i .031 .012 .011 .012 .001 .000 .003 .000 .000
4 m c .076 .118 .118 .044 .087 .093 .015 .026 .026

DE .053 .065 .065 .028 .044 .047 .009 .013 .013

i .082 .035 .028 .039 .010 .004 .012 .002 .000
l c .014 .038 .055 .005 .024 .039 .001 .010 .014

DE .048 .037 .042 .022 .017 .022 .007 .006 .007

Note. Type i, Type c, and Decision error probability are denoted by i, c, and DE. Small, medium, and large violations under
Hc are denoted by s, m, and l. The error probabilities are determined based on the required sample size for each ordering of
population means under Hc, and then averaged and presented in violation categories. Note that dHc = .2 for all sample sizes.
Let * indicate that sample sizes larger than 1, 000 were required to meet this level of Indecision probability, and thus no error
probabilities are known.
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Table 2.13
Error probabilities for Approach 2b using Hi′

Indecision probability
.3 .2 .1

K dHi′
= dHi = .2 .5 .2 .5 .2 .5

3

s

.2
i .030 .007 .015 .001 .005 .000
i′ .030 .068 .015 .044 .005 .014
DE .030 .037 .015 .023 .005 .007

.5
i .068 .028 .044 .015 .014 .005
i′ .007 .028 .001 .015 .000 .005
DE .037 .028 .022 .015 .007 .005

m

.2
i .289 .214 .053 .016 .018 .046
i′ .322 .322 .053 .121 .018 .000
DE .305 .268 .053 .069 .018 .023

.5
i .289 .214 .122 .054 .046 .016
i′ .239 .239 .014 .058 .001 .016
DE .264 .227 .068 .056 .024 .016

l

.2
i .316 .226 .070 .022 .022 .000
i′ .328 .328 .070 .146 .022 .059
DE .322 .277 .070 .084 .022 .030

.5
i .316 .226 .146 .074 .059 .020
i′ .239 .239 .022 .074 .000 .020
DE .277 .232 .084 .074 .030 .020

4

s

.2
i .030 .007 .014 .001 * .000
i′ .030 .064 .014 .038 * .014
DE .030 .035 .014 .020 * .007

.5
i .064 .027 .038 .014 .014 .005
i′ .007 .027 .001 .014 .000 .005
DE .035 .027 .019 .014 .007 .005

m

.2
i .255 .222 .043 .009 .016 .000
i′ .410 .410 .038 .094 .013 .040
DE .333 .316 .040 .052 .015 .020

.5
i .255 .222 .095 .044 .040 .016
i′ .346 .346 .009 .038 .000 .014
DE .300 .284 .052 .041 .020 .015

l

.2
i .320 .231 .320 .231 .037 .004
i′ .383 .383 .383 .383 .038 .107
DE .352 .307 .352 .307 .038 .056

.5
i .320 .231 .320 .231 .107 .036
i′ .291 .291 .291 .291 .004 .037
DE .306 .261 .306 .261 .056 .037

Note. Type i, Type c, and Decision error probability are denoted by i, c, and DE. Small, medium, and large violations under
Hi′ are denoted by s, m, and l. Let * indicate that sample sizes larger than 1, 000 were required to meet this level of Indecision
probability, and thus no error probabilities are known.
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2.6.4 Approach 3

Table 2.14–2.17 show the required group sample sizes for K = 2, 3, 4, for the evaluation
of Hi and Hc with BFic, using Approach 3. Tables 2.14 and 2.15 show the required group
sample sizes if the median BFic or BFii′ is required to be of size B under Hi, and Tables
2.16 and 2.17 show the required group sample sizes if the median BFic or BFii′ is required
to be of size 1/B under Hc or Hi′ .

Example 3.1 Suppose a researcher wants to evaluate Hi with Hc, with K = 3. The researcher
wants to know that 50% of the possible Bayes factors if Hi is true, is larger than 10, and that
50% of the possible Bayes factors if Hc is true, is smaller than 1

10 . He specifies dHi = .5,
dHc = .2, and expects even small violations to be possible under Hc. As can be seen in
Tables 2.14 and 2.16, the required sample sizes to meet the boundaries are 50 and 839,
respectively. Because the researchers wants to adhere to both boundaries, the largest sample
size is required, which is 839. Additionally, we know that 13.4% of the possible Bayes
factors under Hc is larger than 1, which implies that the probability of finding evidence in
favour of the Hi when Hc is true, is .134.

Suppose this researcher did not consider Hc, but Hi′ with a small deviation of Hi. As can be
seen in Table 2.15 and 2.17, the required samples size are 63 and 391, respectively. Again,
because both boundaries need to be adhered, the largest sample size must be considered,
which is 391. Additionally, we know that 7.8% of the possible Bayes factors under Hc is
larger than 1, thus a probability of .078 to find evidence in favour of Hi when Hc is true.

Example 3.2 Suppose a researcher wants to evaluate Hi with Hc, with K = 3. The researcher
wants to know that 50% of the possible Bayes factors if Hc is true, is smaller than 1

3 . He
specifies dHi = .2, dHc = .2, and expects that only large violations are possible under Hc.
As can be seen in Table 2.16, the required sample size is 2, and additionally, we know that
30.3% of possible Bayes factors under Hc is larger than 1. This researcher has a probability
of .303 to find evidence in favour of Hi when Hc is true. Suppose this researcher did not
consider Hc, but Hi′ with a large deviation of Hi. As can be seen in Table 2.15, the required
sample size is 9, and additionally, we know that 33.2% of possible Bayes factors under Hi′

is larger than 1. This researcher has a probability of .332 to find evidence in favour of Hi

when Hc is true.

Example 3.3 Suppose a researcher wants to evaluate Hi with Hc, with K = 4. The researcher
wants to know that 50% of possible Bayes factors if Hi is true, is larger than 20. He specifies
dHi = .2, dHc = .2. As can be seen in Table 2.14 the required sample size is 637, and
additionally, we know that 1.1% of all possible Bayes factors under Hi is smaller than 1.
Suppose this researcher did not consider Hc, but Hi′ . As can be seen in Table 2.15 the
required sample size is 38 using a large violation of Hi under Hi′ , with 18% of possible
Bayes factors under Hi smaller than 1. For medium violations, the sample size is 283, with
9.1% of possible Bayes factors smaller than 1, and for small violations, the sample size
required is larger than 1, 000.

2.6.5 Discussion of table features

This section discusses two features of the tables presented in Section 2.6. First, the required
sample sizes are compared to sample sizes presented by Cohen (1992) for the evaluation of

38



Table 2.14
Required group sample sizes for controlling BFic under Hi at B in Approach 3

B
3 10 20

K dHi = .2 .5 .8 .2 .5 .8 .2 .5 .8

2 24 4 2 87 15 6 136 23 9
.242 .238 .210 .091 .089 .091 .044 .046 .038

3 81 13 6 301 50 20 513 83 33
.196 .210 .184 .039 .037 .037 .011 .010 .012

4 97 16 7 352 58 23 637 103 40
.220 .224 .231 .040 .039 .040 .011 .010 .010

Note. Entries in italics indicate P(BFic < 1|Hi). Note that dHc = .2 for all sample sizes.

Table 2.15
Required group sample sizes for controlling BFii′ under Hi at B in Approach 3

B
3 10 20

K dHi .2 .5 .2 .5 .2 .5

s 118 19 391 63 577 94
.219 .221 .078 .079 .043 .040

3 m 17 2 67 10 107 17
.305 .331 .159 .173 .103 .107

l 9 2 41 6 67 11
.332 .332 .183 .195 .123 .126

s 274 45 884 144 * 212
.218 .213 .079 .072 − .040

4 m 56 2 187 30 283 45
.280 .345 .137 .138 .091 .092

l 2 2 24 2 38 2
.394 .296 .230 .296 .180 .296

Note. Entries in italics indicate P(BFic < 1|Hi). Let * denote sample sizes larger than 1, 000, and
− denote the absence of P(BFic < 1|Hi) in this situation.
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Table 2.16
Required group sample sizes for controlling BFic under Hc at 1/B in Approach 3

B
K 3 10 20

2 24 87 136
.242 .091 .044

s 444 839 *
.281 .134 −

3 m 21 110 165
.247 .095 .061

l 2 58 101
.303 .091 .049

s 2 * *
.303 − −

4 m 2 370 492
.272 .146 .099

l 2 52 107
.228 .146 .071

Note. Entries in italics indicate P(BFic > 1|Hc). Let * denote sample sizes larger than 1, 000, and
− denote the absence of P(BFic > 1|Hc) in this situation. Note that dHc = .2 for all sample sizes.

Table 2.17
Required group sample sizes for controlling BFii′ under Hi′ at 1/B in Approach 3

K 3 10 20

3

s
.2 118 391 577

.219 .078 .043

.5 19 63 94
.221 .079 .040

m
.2 17 67 105

.303 .158 .103

.5 3 11 17
.312 .161 .100

l
.2 9 41 67

.332 .183 .123

.5 2 6 11
.334 .196 .126

4

s
.2 274 884 *

.218 .079 −

.5 45 144 212
.214 .073 .040

m
.2 50 179 271

.282 .131 .085

.5 9 30 43
.287 .125 .082

l
.2 4 24 40

.385 .231 .175

.5 2 4 6
.359 .242 .196

Note. Entries in italics indicate P(BFic > 1|Hc). Let * denote sample sizes larger than 1, 000, and
− denote the absence of P(BFic > 1|Hc) in this situation.
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Table 2.18
Required sample sizes

Critical value Effect size
Approach Type Size .2 .5 .8
Cohen (1992) Decision error .125 393 64 26
Approach 1 Decision error .100 82 40 36

Approach
2

Decision error .100 20 8 6
Indecision .422 .384 .343

Approach
2b

Indecision .100 182 108 108
Decision error .005 .007 .007

Approach
3

B under Hi 10 87 15 6
P(BFic < 1|Hi) .091 .089 .091

Approach
3

1/B under Hc
1
10 87

P(BFic > 1|Hc) .091

Note. Effect size indicates d for Cohen (1992), and dHi for Approach 1–3. Note that dHc = .2
for all approaches. Note that Cohen’s approach compares H0 and H1, while Approaches 1–3
compare Hi and Hc. Entries in italics are additional probabilities rendered by an approach.

H0 and H1. Secondly, the benefit of using Hi′ over Hc is discussed.

The sample sizes presented in Tables 2.4–2.17 might seem large on first view. However,
in this paper strict measures for the effect sizes and the error probabilities have been used.
Small, medium, and large effect sizes are used, however, these effect sizes describe the
difference between the largest and the smallest mean. Thus, large differences between each
pair of means are not common. As was explained in Section 2.4.5, the used critical values
in this paper (.1, .05 and .025) are more strict than the Decision error probability based on
the traditional Type I and Type II error probabilities ((.05 + .2)/2 = .25/2 = .125).

In order to put the results obtained in this paper in perspective, the sample sizes based on
the approaches in this paper are compared with the sample sizes presented by Cohen (1992).
Table 2.18 presents required sample sizes for K = 2, using Cohen’s comparison of H0 and
H1, and for each of the approaches presented in this paper. Specifically, all approaches are
compared to the sample sizes for the evaluation of H0 : µ1 = µ2 and H1 : µ1 , µ2, with a
Type I error probability of .05, and a Type II error probability of .80, that is, a Decision
error probability of .125. Only K = 2 is considered, because for K = 2, the effect sizes
used in this paper corresponds to the effect sizes used by Cohen. Furthermore, although the
comparison of Hi : µ1 > µ2 with Hc : µ1 < µ2 is different from the comparison of H0 with
H1, it does give an impression of how the required sample sizes compare.

For each approach, the type and size of the critical value is specified such that the method
is as similar as possible to the Decision error probability used by Cohen. A Decision
error probability under Approach 1 is most comparable to that of Cohen when it is .100,
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since larger values than .100 are not considered in this paper. A Decision error probability
under Approach 2 is most comparable to that of Cohen when it is .100. Approach 2b
seemed most comparable to Cohen when an Indecision probability of .100 is considered,
since additionally to the Indecision probability, this approach renders Decision error
probability. For Decision error probabilities smaller than .025, Approach 2b results in a
higher probability of a correct decision than Cohen’s setup. Finally, in Approach 3 B does
not correspond to a Decision error of a certain size. Therefore, B = 10 is considered, which
is usually considered to express a fair amount of evidence.

As can be seen in Table 2.18, for a small effect size under Hi and Hc, the required sample
size comparing Hi and Hc with Approaches 1–3 is smaller than required for comparing
H0 and H1 using Cohen’s method. Furthermore, for all approaches but Approach 2b, the
required sample size for a medium effect size is smaller than that required for Cohen’s
approach.

The comparison with the sample sizes prescribed for null hypothesis significance testing
puts the results of this paper in perspective. For small to medium effect sizes, which are
often expected in applied research, Approaches 1–3 require smaller sample sizes than
Cohen’s power analysis. For Approach 2, it appears that the smaller sample sizes do come
at the cost of a relatively large Indecision probability. For large effect sizes, the required
sample sizes are smaller for Approach 2 and 3 relative to Cohen’s sample size, and for the
other approaches, the sample sizes are not much larger than those following from Cohen
(1992). For K = 3, 4, the sample sizes are less easy to compare, because of different uses of
effect size, and more complex hypotheses. However, if the results are compared, comparing
Hi to Hc will require similar sample sizes to Cohen, whereas comparing Hi to Hi′ will in
general result in smaller sample sizes.

As can be seen in the tables, in general, a smaller sample size is required if Hi is compared
to Hi′ than when it is compared to Hc. For example, as can be seen in Table 2.4, the required
sample size for K = 3, dHi = .5, and a Decision error probability of .05, the required sample
size is 977 for small violations of Hc, which is the only violation that should be considered
in practice. As can be seen in Table 2.5, if Hi′ is considered, the sample size ranges from
22 to 327, dependent on the choice of violation size and effect size under Hi′ . All of these
sample sizes are much smaller than the 977 required for the comparison of Hi to Hc. Thus,
if you have a competing theory, you are better off using Hi′ than Hc. Note that the required
sample size is not in all situations smaller when using Hi′ rather than Hc. Appendix 10.1
explains situations in which this is not the case, and further elaborates on some numerical
characteristics of the tables.

2.7 In practice

This section provides guidelines for applied researchers to select an approach, Hi′ or Hc,
an effect size, and a critical value. Figure 2.5 shows a decision tree, with some example
research questions. First of all, the decision tree will be discussed, and then the further
choices that must be made.

As can be seen in Figure 2.5, the choice for an approach depends on maximally two
sequential questions. The first question, What type of decision do you want to make? relates
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to whether a dichotomous, trichotomous, or no decision should be made. For dichotomous
decisions, that is, choosing between Hi and Hc or Hi′ , Approach 1 applies. For trichotomous
decisions, that is, choosing between Hi, Hc or Hi′ , and indecision, either Approach 2 or 2b
applies. For situations in which a researcher does not want to make decision, but express
the support in the data for each hypothesis, Approach 3 applies. If a trichotomous decision
is required, the second question, What probability do you want to control for? has to be
answered. This relates to whether a researcher wants to control the Indecision probability,
that is, Approach 2b, or control the Type i, c, i′ or Decision error probability, that is,
Approach 2.

Figure 2.5. Decision Tree

Example 1. Suppose a researcher wants to see if a new drug is more effective than a placebo,
Hi : µnew > µplacebo, and compares this with the complement, Hc. It is very important to
know if Hi or Hc is true, to support the decision to implement the drug or not. Answering
Question 1 in Figure 2.5 this researcher would need to use Approach 1 to determine the
required group sample size, because a dichotomous decision has to be made. (cf. Tables
2.4–2.5).

Example 2. Suppose a researcher wants to investigate whether flyers or posters are more
effective in informing inhabitants of a neighbourhood about upcoming events, Hi : µflyer >
µposter versus Hi′ : µposter > µflyer. The researcher wants to make a decision for Hi or Hi′

only when the evidence is sufficiently large. He is open to the fact that the Bayes factor may
be too small, and thus replies to Question 1 that he wants to make a trichotomous decision,
where he allows for indecision. Finally, he does not have a limit to what indecision he
maximally allows, so he replies to Question 2 that he wants to control the error probability.
This researcher would need to use Approach 2 to determine the required group sample size
(cf. Tables 2.6–2.9).
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Example 2b. Suppose a researcher wants to investigate the effect of learning tool on the
test outcome of students. He hypothesizes Hi : µiPad > µPC > µbook, and Hc : not Hi. The
researcher wants to make a decision for Hi or Hc only when the evidence is sufficiently
large. He is open to the fact that the Bayes factor may be too small, and thus replies to
Question 1 that he wants to make a trichotomous decision, where he allows for indecision.
Because his research is quite costly to execute, he wants to limit the Indecision probability.
Therefore, this researcher should use Approach 2b to determine the required group sample
size (cf. Tables 2.10–2.13).

Example 3. Suppose a researcher wants to evaluate two competing theories. The theories
concern the attitude of people towards healthy food, after being primed with positive, neutral,
or negative cues. He hypothesizes Hi : µ+ > µneutral > µ− and Hi′ : µ− > µ+ > µneutral. This
researcher is not interested in making a decision, but wants to express the support in the
data for Hi and Hi′ . Following Question 1 in Figure 2.5, he needs to use Approach 3 to
determine the required sample size (cf. Tables 2.16–2.17).

After determining the appropriate approach, a researcher still needs to make three decisions.
First of all, a researcher needs to decide whether he wants to compare Hi to Hc or Hi′ . If Hc

is used, as explained in Section 2.5.2, only small violations of Hi should be considered, and
if Hi′ is used, the researcher must decide based on his theory, what the ordering of means
under Hi′ is. Table 2.3 displays what is considered a small violation under Hc, and shows
the orderings considered under Hi′ in this paper

Secondly, a researcher needs to choose the effect sizes and population means under Hi and
Hc or Hi′ . Table 2.2 displays the population means for the effect sizes considered in this
paper. Inspiration for effect size can be taken from previous research in the same field. If
the effect size generally is .5, use .5. If no previous research exists, it is up to the researcher
to choose a reasonable effect size. It is advised to use a small effect size in this situation.

Thirdly, a researcher needs to make one or two decisions regarding the critical value. This
differs per approach. Table 2.1 displays the critical values for the different decision criteria
used in this paper. For Approach 1 and 2, a researcher must first decide whether he wants
to control Type i, Type c or Type i′, or Decision error probability. This choice is dependent
on what type of error the researcher values more strongly. For example, if a Type i error
is deemed most harmful, the Type i error probability must be controlled. Secondly, the
researcher must choose the critical value. This should be done based on practical value.
The smaller the value, the larger the probability that the resulting decision will be correct.

For Approach 2b, a researcher must only decide what critical value he considers for the
Indecision probability. This choice depends on the costs related to not making a decision.
If the costs are high, a small critical value should be chosen for the Indecision probability.

For Approach 3, a researcher must first decide whether he wants to control the median
Bayes factor under Hi, the median Bayes factor under Hc or Hi′ , or control both. For
example, if the evidence under Hi is deemed most important, the chosen B only refers to
Bayes factors under Hi. Secondly, the researcher must choose a size of this median Bayes
factor, which is expressed by B. This should be done based on practical value. Tentative
guidelines for the strength of the evidence expressed by B can be found in Kass & Raftery
(1995). According to them, B = 3 expresses positive support, and B = 20 expresses strong
support.
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2.8 Discussion

In this paper, sample sizes have been determined for the comparison of Hi with Hc or Hi′ ,
by means of three main approaches. As was indicated in Section 2.3 and 2.4, strict effect
sizes and critical values have been used. The effect sizes have been chosen such that they
gave a reasonable representation of what can be expected in social sciences. For the error
probabilities, it should be noted again that strict error probabilities are required for more
sound research outcomes. In order to accommodate researchers that want different effect
sizes, error probabilities, or different orderings of means under Hi′ than those considered in
this paper, an R script has been developed2.

Future research could investigate the required sample sizes for different types of hypotheses.
For example, the use of a composite Hi′ , that consists of multiple orderings, can be of
interest for researchers that consider not all orderings under Hc relevant, but do not have one
specific theory. Furthermore, other informative hypotheses than simple order constrained
hypotheses could be considered. Finally, only have been considered ANOVA models. It
would be interesting to extend this research to other statistical models.

2The script and the manual can be downloaded using this link: 10.17605/OSF.IO/D9EAJ

45



46



Chapter 3

All for one or some for all?
Evaluating informative
hypotheses using multiple N = 1
studies

by F. Klaassen, C. Zedelius, H. Veling, H. Aarts and H. Hoijtink1

3.1 Introduction

There is increasing attention for individual centered analyses (e.g. Molenaar, 2004; Hamaker,
2012). For example, in personalized medicine it is not relevant to find if a treatment works on
average in a group of individuals but rather whether it works for any individual (Woodcock,
2007). This paper is concerned with individual centered analyses in the form of multiple
N = 1 studies. A core feature of this paper is that multiple hypotheses are formulated for
each person. These hypotheses are first evaluated at the individual level and subsequently
conclusions are formed at the group level. Specifically, this will be done in the context of a
within-subject experiment (for a pilot study into using informative hypothesis in the context
of multiple N = 1 studies, see Kluytmans et al., n.d.). In a within-subject experiment
each person i = 1, ..., P is exposed to the same set of experimental conditions j = 1, ..., J.
By conducting R replications with a dichotomous outcome (0 = failure, 1 = success) in

1Published as Klaassen, F., Zedelius, C. M., Veling, H., Aarts, H., & Hoijtink, H. (2017). All for one or some
for all? Evaluating informatie hypotheses using multiple N = 1 studies. Behavior Research Methods, 50(6), pp.
2276-2291.

Author contributions: FK wrote the paper, designed, programmed, and executed the simulation. HH provided
input for the project. HH and FK further conceptualized this project. HH provided feedback on writing, concepts,
and programming. CZ, HV and HA provided the data and hypotheses used in the illustration and feedback on the
writing.
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condition j the number of successes xi
j of person i can be obtained. This can be modeled

using a binomial model with R trials and unknown success probability πi
j.

This paper proposes a Bayesian method that evaluates informative hypotheses (Hoijtink,
2012) for multiple within-subject N = 1 studies. Researchers can formulate informative
hypotheses based on (competing) theories or expectations. This can be achieved by using
the relations ‘>’ and ‘<’ to impose constraints on the parameters πi = [πi

1, ..., π
i
J]. E.g.

‘πi
1 > πi

2’ states that πi
1 is larger than πi

2 and reversely, ‘πi
1 < πi

2’ states that πi
1 is smaller

then πi
2. When a comma is used to separate two parameters, such as ‘πi

1, π
i
2’, no constraint

is imposed between these parameters. For each person, multiple informative hypotheses
can be evaluated by means of Bayes factors (Kass & Raftery, 1995). Using the Bayes factor,
it can be determined for each person which hypothesis is most supported by the data. Here
our method departs from traditional analyses. Rather than evaluating hypotheses at the
group level, the hypotheses are evaluated for each person separately. In social psychology,
for example, it is often hoped or thought that if a hypothesis holds at the group level,
this also applies to all individuals (see for example, Moreland & Zajonc, 1982; Klimecki,
Mayer, Jusyte, Scheeff, & Schönenberg, 2016). Hamaker (2012) describes the importance
of individual analyses using an example: Cross-sectionally, the number of words typed per
minute and the percentage of typos might be negatively correlated. That is, people that type
fast tend to be good at typing and thus make fewer mistakes than people that type slow.
However at the individual level a positive correlation exists between these variables, i.e. if
a fast typer goes faster than his normal typing speed, the number of mistakes will increase
(Hamaker, 2012). Similarly, if multiple persons aim to score a penalty several times, we
might find that the average success probability is smaller than .5, however this does not
imply that each individual has a penalty scoring probability smaller than .5. Differently
from Hamaker (2012) and Molenaar (2004) our approach does not stop at a single N = 1
study. Rather, when individual analyses have been executed, it is interesting to see if all
individuals support the same hypothesis. Thus, when multiple hypotheses are evaluated for
P individuals, two types of conclusions can be drawn. First, by executing multiple N = 1
studies it can be determined for each person if any hypothesis can be selected as the best,
and if so, which hypothesis this is. Second, it can be determined if the sample comes from
a population that is homogeneous with respect to the support of the specified hypotheses,
and if so, which hypothesis is supported most.

This paper is structured as follows. First, the difference between analyses at the group
level and multiple N = 1 analyses is elaborated upon by means of an example that will
be used throughout the paper. Second, it will be described how informative hypotheses
can be evaluated for one N = 1 study. Third, it will be explained how multiple N = 1
studies can be used to evaluate each hypothesis and detect if any can be selected as the best
hypothesis for all individuals. The appropriate number of replications and the number of
participants can be determined using a sensitivity analysis. The paper is concluded with a
short discussion.

3.2 P-population and WP-population

An example of a within-subject experiment is Zedelius, Veling, & Aarts (2011). These
researchers investigated the effect of interfering information and reward on memory. In
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each trial, participants were shown five words on a screen and asked to remember these
for a brief period of time. During this time interfering information was presented on the
screen. Afterwards they were asked to recall the five words verbally in order to obtain
a reward. Three factors with two levels each were manipulated over the trials: Before
each trial started, participants were shown a high (hr) or a low (lr) reward on the screen
they would receive upon completing the task correctly. This reward could be displayed
subliminally (sub), that is, very briefly (17ms) or supraliminally (sup), that is for a longer
duration of 300ms. Finally, the visual stimulus interfering with the memory task was either
a sequence of letters, low interference (li), or eight words that were different from the five
memorized high interference (hi). Combining these factors results in eight conditions, for
example hr-sub-hi and lr-sup-li. Seven trials were conducted in each condition, resulting in
a total of 56 trials per participant. After each trial the participant was given a score of 1 if
all five words were recalled and 0 if not.

Zedelius et al. (2011) specified expectations regarding the ordering of success probabilities
that can be translated in many different hypotheses. One example of an informative
hypothesis based on the expectations of Zedelius et al. (2011) is

H1 :hr-sup-li > hr-sup-hi > hr-sub-li > hr-sub-hi >

lr-sup-li > lr-sup-hi > lr-sub-li > lr-sub-hi,
(3.1)

where hr-sup-li is πhr-sup-li, the success probability in condition hr-sup-li. For simplifications
in the remainder of this paper, π is omitted in the notation of all examples using the
conditions from Zedelius et al. (2011). Alternatively, for each person i the hypothesis could
be formulated as:

Hi
1 :hr-sup-lii > hr-sup-hii > hr-sub-lii > hr-sub-hii >

lr-sup-lii > lr-sup-hii > lr-sub-lii > lr-sub-hii,
(3.2)

where hr-sup-lii is the success probability in condition hr-sup-li of person i.

To illustrate the difference between Equation 3.1 and 3.2 let us consider a population
of persons (P-population from hereon) and a within-person population (WP-population
from hereon). Each individual in the P-population has their own success probabilities
πi. The averages of these individual probabilities are the P-population probabilities π =

[π1, ..., πJ], where π j = 1
P
∑P

i=1 π
i
j. Equation 3.1 is a hypothesis regarding the ordering of

these P-population probabilities. Equation 3.2 is a hypothesis regarding the ordering of
the WP-population probabilities for person i. Evaluating this hypothesis for person i is an
example of an N = 1 study.

Many statistical methods are suited to draw conclusions at the P-population level. However,
if a hypothesis is true at the P-population level, there is no guarantee that it holds for all
WP-populations (Hamaker, 2012). Thus, a conclusion at the P-population level does not
necessarily apply to each individual. Rather than π, this paper concerns the individual πi. If
multiple hypotheses are formulated for each person i, it can be determined for each person
which hypothesis is most supported. Furthermore, it can be assessed whether the sample of
P persons comes from a population that is homogeneous with respect to the informative
hypotheses under consideration.
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3.3 N = 1: How to analyze the data of one person

This section describes how the data of one person can be analyzed. First, the general form
of hypotheses considered for every person are introduced. Subsequently, the statistical
model used to model the N = 1 data is introduced. Finally, the Bayes factor is introduced
and elaborated upon.

3.3.1 Hypotheses

Researchers can formulate informative hypotheses regarding πi. The general form of the
informative hypotheses used in this paper is:

Hi
m : Rmπ

i > 0, (3.3)

where m,m′ = 1, ...,M(m , m′) is the label of a hypothesis, M is the number of hypotheses
considered and m′ is another hypothesis than m, πi = [πi

1, ...π
i
J] and Rm is the constraint

matrix with J columns and K rows, where K is the number of constraints in a hypothesis.
The constraint matrix can be used to impose constraints on (sets of) parameters. An example
of a constraint matrix R for J = 4 is:

R1 =

 1 −1 0 0
0 1 −1 0
0 0 1 −1

 , (3.4)

which renders
Hi

1 : πi
1 > π

i
2 > π

i
3 > π

i
4, (3.5)

which specifies that the success probabilities πi are ordered from large to small. Note that
the first row of R1 specifies that 1 · πi

1 − 1 · πi
2 + 0 · πi

3 + 0 · πi
4 > 0, that is, πi

1 > πi
2. The

constraint matrix

R2 =
[
.5 .5 −.5 −.5

]
, (3.6)

renders the informative hypothesis

Hi
2 :
πi

1 + πi
2

2
>
πi

3 + πi
4

2
, (3.7)

which states that the average of the first two success probabilities is larger than the average of
the last two. Hypotheses constructed using Equation 3.3 are a translation of the expectations
researchers have with respect to the outcomes of their experiment into restrictions on the
elements of πi.

Another hypothesis that is considered in this paper is the complement of an informative
hypothesis:

Hi

�m
: not Hi

m. (3.8)

The complement states that Hi
m is not true in the WP-population. Stated otherwise, the

reverse of the researchers’ expectation is true. Finally, Hi
u denotes the unconstrained
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hypothesis:
Hi

u : πi
1, π

i
2, ..., π

i
J−1, π

i
J , (3.9)

where each parameter is ‘free’. An informative hypothesis Hi
m constrains the parameter

space such that only particular combinations of parameters are allowed, Hi

�m
comprises that

part of the parameter space that is not included in Hi
m and the conjunction of Hi

m and Hi

�m
is

Hi
u. The difference in use of Hi

u and Hi

�m
will be elaborated further in the section on Bayes

factors.

Zedelius et al. (2011) formulated several expectations concerning the ordering of success
probabilities over the experimental conditions. The main expectation was that high reward
trials would have a higher success probability than low reward trials. This main effect and
the expectations regarding the other conditions (interference level and visibility duration)
can be translated in various informative hypotheses (Kluytmans et al., n.d.). A first
translation of the expectations is

Hi
1 :hr-sup-lii > hr-sup-hii > hr-sub-lii > hr-sub-hii >

lr-sup-lii > lr-sup-hii > lr-sub-lii > lr-sub-hii,
(3.10)

which states that for any person i the success probabilities are ordered from high to low.
To give some intuition for this hypothesis, Figure 3.1 shows eight bars that represent the
experimental conditions, and its height indicates the success probability in that condition,
and the ordering of probabilities adheres to Hi

1. Substantively, this hypothesis specifies that
all conditions with a high reward have a higher success probability than those with a low
reward, which in Figure 3.1 can be verified since all dark gray bars are higher than any light
gray bar. Furthermore, Hi

1 specifies that within this main reward value effect, that is, looking
only at high reward success conditions or only at low reward conditions, a supraliminally
shown rewards (solid border) results in a higher success probability than a subliminally
shown reward (dotted border). Finally, within the visibility duration effect, that is, looking
only at conditions with the same reward and same visibility duration, low interference (no
pattern) results in a higher success probability than high interference (diagonally striped
pattern). Alternatively, two less specific hypotheses can be formulated that include the main
effect of reward and only one of the remaining main effects:

Hi
2 :hr-lii > hr-hii > lr-lii > lr-hii, (3.11)

and

Hi
3 :hr-supi > hr-subi > lr-supi > lr-subi, (3.12)

where hr-lii indicates the average success probability of the hr-sup-lii and hr-sub-lii

conditions. In Figure 3.1, both Hi
2 and Hi

3 are true. Different from Hi
1, these hypotheses

do not state that any high reward condition has a higher success probability than any
low reward condition, but rather that averaged over both interference level and visibility
duration high reward conditions have a higher success probability than low reward
conditions. Additionally, Hi

2 further specifies that averaged over visibility duration, the
success probability is always higher in high reward conditions compared to low reward
conditions. Within this main effect of reward value the success probability is higher for
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Figure 3.1. Graphical representation of all hypotheses by Zedelius et al. (2011)

low interference than for high interference. Analogously, Hi
3 states that averaged over

interference level, the success probability is always larger in high compared to low reward
conditions. Within this pattern the success probability is larger for supraliminally compared
to subliminally shown rewards.

A fourth hypothesis relates to the interaction effect between reward type and visibility
duration:

Hi
4 :hr-supi − lr-supi > hr-subi − lr-subi, (3.13)

which states that the benefit of high reward over low reward is larger when the reward
is shown supraliminally compared to when the reward is shown subliminally. This, too,
is presented in Figure 3.1, since the difference between hr-sup (average of the dark-gray,
solid border bars) and lr-sup (average of the light-gray, solid border bars) is larger than
the difference between hr-sub (average of the dark-gray, dashed border bars) and lr-sub
(average of the light-gray, dashed border bars). Note that, other than Hi

2 and Hi
3, Hi

1 is not
a special case of Hi

4. These hypotheses can both be true, as is presented in the figure, but
knowing that Hi

1 is true gives no information about Hi
4.

Together Hi
1, Hi

2, Hi
3 and Hi

4 form a set of competing informative hypotheses that can be
evaluated for each person.
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3.3.2 Density, prior, posterior

To evaluate hypotheses using a Bayes factor, the density of the data, prior and posterior
distribution are needed. For the type of data used in this paper, that is, the number of
successes xi = [xi

1, ..., x
i
J] observed for person i in R replications in each condition j the

density of the data is

f (xi | πi) =

J∏
j=1

(
R
xi

j

)
(πi

j)
xi

j (1 − πi
j)

R−xi
j , (3.14)

that is, in each condition j the response xi
j is modeled by a binomial distribution. The prior

distribution h(πi|Hi
u) for person i is a product over Beta distributions

h(πi | Hi
u) =

J∏
j=1

Γ(α0 + β0)
Γ(α0)Γ(β0)

(πi
j)
α0−1(1 − πi

j)
β0−1, (3.15)

where α0 = β0 = 1, such that h(πi | Hi
u) = 1, that is, a uniform distribution. As will

be elaborated upon in the next section, only h(πi | Hi
u) is needed for the computation of

the Bayes factors involving Hi
m, Hi

m′ and Hi
u (Klugkist et al., 2005). The interpretation of

α0 and β0 is the prior number of successes and failures plus one. In other words, using
α0 = β0 = 1 implies that the prior distribution is uninformative. Consequently, the posterior
distribution based on this prior is completely determined by the data. Furthermore, by
using α0 = β0 = 1 for each πi the prior distribution is unbiased with respect to informative
hypotheses that belong to an equivalent set (Hoijtink, 2012, p. 205). As will be elaborated
in the next section, unbiased prior distributions are required to obtain Bayes factors that are
unbiased with respect to the informative hypotheses under consideration.

The unconstrained posterior distribution is proportional to the product of the prior
distribution and the density of the data:

g(πi | xi,Hi
u) ∝ f (xi | πi) · h(πi | Hi

u)

∝

J∏
j=1

Γ(α1 + β1)
Γ(α1)Γ(β1)

(πi
j)
α1−1(1 − πi

j)
β1−1,

(3.16)

where α1 = xi
j + α0 = xi

j + 1 and β1 = (R − xi
j) + β0 = (R − xi

j) + 1. As can be seen in
Equation 3.16, the posterior distribution is indeed only dependent on the data.

3.3.3 Bayes factor

We will use the Bayes factor to evaluate informative hypotheses. A Bayes factor (BF) is
commonly represented as the ratio of the marginal likelihoods of two hypotheses (Kass &
Raftery, 1995). Klugkist et al. (2005) and Hoijtink (2012, 2012, p. 51–52, 57–59) show
that for inequality constrained hypotheses of the form presented in Equation 3.3 the ratio of
marginal likelihoods expressing support for Hi

m relative to Hi
u can be rewritten as

BF i
mu =

f i
m

ci
m
. (3.17)
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The Bayes factor balances the relative fit and complexity of two hypotheses. Fit and
complexity are called relative because they are relative with respect to the unconstrained
hypothesis. In the remainder of this text, referrals to fit and complexity should be read as
relative fit and complexity. The complexity ci

m is the proportion of the unconstrained prior
distribution for Hi

u in agreement with Hi
m

ci
m =

∫
πi∈Hi

m

h(πi | Hi
u)δπi. (3.18)

Using Equation 3.15 with α0 = β0 = 1 for each πi it is ensured that the prior distribution is
unbiased with respect to hypotheses that belong to an equivalent set. Consider for example,
H1 : π1 > π2 > π3 > π4 and H2 : π1 > π2 > π4 > π3. These hypotheses, and the other 22
possible ordering of πi, are equally complex and should thus have the same complexity.
Using Equation 3.15, this complexity is computed as 1

24 for each of the set of 24 equivalent
hypotheses (Hoijtink, 2012, p. 60).

The fit f i
m is the proportion of the unconstrained posterior distribution in agreement with

Hi
m:

f i
m =

∫
πi∈Hi

m

g(πi | xi,Hi
u)δπi. (3.19)

The appendix describes how stable estimates of the complexity and fit can be computed
using MCMC samples from the prior and posterior distribution, respectively.

Since Equation 3.17 is a ratio of two marginal likelihoods (one for Hi
m and one for Hi

u) it
follows that

BF i
mm′ =

BF i
mu

BF i
m′u

=
f i
m/c

i
m

f i
m′/c

i
m′
, (3.20)

and that

BF i
m�m

=
f i
m/c

i
m

f i

�m
/ci

�m

=
f i
m/c

i
m

1 − f i
m/1 − ci

m
. (3.21)

Three hypothetical N = 1 datasets with J = 4 and R = 7 are presented in Table 3.1. Three
possible informative hypotheses regarding these data are Hi

1 from Equation 3.5, Hi

�1
and

Hi
2 from Equation 3.7. The table presents the complexity, fit and Bayes factors of these

hypotheses. As can be seen in the table, the complexity of Hi
1 is .04 = 1/24 and ci

2 = .5.
The table illustrates that complexity depends on the hypotheses but not on the data: for
each of the three data examples the complexities are the same.

The first example (Person 1) in Table 3.1 contains data that are in agreement with Hi
1 , and

therefore also with Hi
2, since Hi

1 is a specific case of Hi
2. This is reflected by f 1

1 = .556
and f 1

2 = .996. Because Hi
1 is quite specific, it can easily conflict with the data. For

example, based on x1
2 = 5 and x1

3 = 4, it is not very certain that π1
2 > π1

3. In contrast, Hi
2

is less specific, does not involve the constraint π1
2 > π

1
3, and therefore f 1

2 is larger than f 1
1 .

Bayes factors balance complexity and fit of the hypotheses, resulting in BF1
1u = 13.16,

BF1
2u = 2.00, BF1

12 = 6.59 and BF1
2�2

= 99. Interpreting the size of Bayes factors is a matter
that needs some discussion. Firstly, it is important to distinguish the different interpretations
of BF i

mu, BF i
mm′ and BF i

m�m
. In itself, BF i

mu represents the relative change in the support
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Table 3.1
Complexity, fit, and Bayes factors for three hypothetical N = 1 studies.

i xi
1 xi

2 xi
3 xi

4 ci
1 ci

2 f i
1 f i

2 BFi
1u BFi

2u BFi

1�1
BFi

12 BFi

2�21 7 5 4 1 .04 .50 .56 .99 13.16 2.00 28.39 6.59 99
2 7 2 5 1 .04 .50 .06 .89 1.40 1.79 1.43 .78 8.09
3 3 4 6 1 .04 .50 .01 .51 .24 1.01 .23 .24 1.04

Note.Hi
1 = πi

1 > π
i
2 > π

i
3 > π

i
4 and Hi

2 =
πi

1+πi
2

2 >
πi

3+πi
4

2 .

for Hi
m and Hi

u caused by the data. For example, in Table 3.1 we find that the belief for
H1

1 has increased 13 times and the belief for H1
2 has increased 2 times. This shows that,

although with varying degrees, both hypotheses are supported by the data. If we compute
BF i

mm′ we can quantify the relative change in support for Hi
m and Hi

m′ caused by the data.
For example, BF1

12 = 6.6, indicating that the relative support for H1
1 compared to H1

2 has
increased by a factor 6.6. However, BF1

12 is only a relative measure of support, that is, the
best of the hypotheses involved may still be an inadequate representation of the within
person population that generated the data. Note that BF1

mu and BF i
m�m

are always both larger

or smaller than 1. However, by definition BF i
mu ranges from 0 to ci

m
−1 1

ci
m

and BF i
m�m

ranges

from 0 to infinity. Therefore, we prefer to interpret the latter to determine if the best of a set
of hypotheses is also a good hypothesis. By computing BF i

m�m
, we can determine whether

the best hypothesis, in this case Hi
m, is also a good hypothesis, because we get an answer to

the question ‘is or isn’t Hi
m supported by the data?’. In Table 3.1, BF i

1�1
= 28.4 indicates

that the data caused an increase in believe for Hi
m compared to Hi

�m
, which implies that it is

a good hypothesis. Note that this does not rule out the possibility of other, perhaps better,
good hypotheses.

A second issue is the interpretation of the strength of Bayes factors. Although some
guidelines have been provided (interpret 3 as the demarcation for the size of BFab, providing
marginal and positive evidence in favor of Ha, e.g. Kass & Raftery, 1995), we choose not to
follow them. In the spirit of a famous quote from (Rosnow & Rosenthal, 1989), ‘surely
God loves a BF of 2.9 just as much as a BF of 3.1’, we want to stay away from cut-off

values in order not to provide unnecessary incentives for publication bias and sloppy science
(Konijn, Van de Schoot, Winter, & Ferguson, 2015). In our opinion, claiming that a Bayes
factor of 1.5 is not very strong evidence and that a Bayes factor of 100 is strong evidence
will not result in much debate. It is somewhere between those values that scientists may
disagree about the strength. In this paper we used the following strategy to decide when
a hypothesis can be considered best for a person: a hypothesis m is considered the best
of a set of M hypotheses if the evidence for Hm is at least M − 1 times (with a minimum
value of 2) stronger than for any other hypothesis m′. This requirement ensures that the
posterior probability for the best hypothesis is at least .5 if all hypotheses are equally likely
a priori. For example, if two hypotheses are considered, one should be at least 2 times more
preferred than the other, resulting in posterior probabilities of at least .66 versus .33. If
three hypotheses are considered, the resulting posterior probabilities will be at least .50
versus .25 and .25, which corresponds to a twofold preference of one hypothesis over both
alternatives. For four hypotheses the posterior probabilities should be at least .50 versus
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.16, .16 and .16, corresponding to relative support of at least 3 times more for the best
hypothesis than for any other hypothesis. Note that, although these choices seem reasonable
to us, other strategies can be thought of and justified.

For Person 2 in Table 3.1 Hi
2 has gained slightly more belief than Hi

1, since BF2
12 = .78

(BF2
21 = 1.28). Based on this Bayes factor, Hi

2 is not convincingly the better hypothesis of
the two. It is important to note that Bayes factors for different persons do not necessarily
express support in favor of one or the other hypothesis. It is very possible that Bayes factors
for different persons are indecisive. Looking at BF2

1�1
= 1.43 and BF2

2�2
= 8.09, Hi

2 seems

quite a good hypothesis, whereas Hi
1 is not much more supported than its complement.

Finally, Person 3 in Table 3.1 shows data that do not seem to be in line with either Hi
1 or Hi

2.
According to BF3

1u = .24, the support for H3
1 relative to H3

u has decreased after observing
the data. According to BF3

2u = 1.01, the data do not cause a change in support for H3
2

relative to the unconstrained hypothesis. When we look at BF3
12 = .24 (BF3

21 = 4.17), we
find that Hi

2 is a somewhat better hypothesis than Hi
1. However, BF3

2�2
= 1.04, indicating

that although Hi
2 is better than Hi

1, it is not a very good hypothesis. The examples in Table
3.1 show the variety in conclusions that can be obtained. There may or may not be a best
hypothesis, and the best hypothesis may or may not be a good hypothesis.

3.3.4 Illustration

For Zedelius et al. (2011), the main goal was to select the best hypothesis from Hi
1, Hi

2, Hi
3

and Hi
4 presented in Equations 3.10, 3.11, 3.12 and 3.13. The Bayes factors presented in

the first four columns of Table 3.2 can be used to select the best hypothesis for each person.
If a best hypothesis is selected, it is also of interest to determine whether this hypothesis is
a good hypothesis. The last four columns of Table 3.2 can be used to determine whether
the best hypothesis is also ‘good’.

For Person 1, H1
3 is 1.98/.59 ≈ 3.36 times more supported than H1

1 , 1.98/.93 ≈ 2.13 times
more supported than H1

2 and 1.98/.26 ≈ 7.62 times more supported than H1
4 . Although

H1
3 is more supported than the other three hypotheses, a Bayes factor of 2.13 does not

seem very convincing. Comparing the relative strength of the support for all informative
hypotheses for Person 1 leaves us with the conclusion that no single best hypothesis could
be detected. This implies that for Person 1, we would not be quite certain which hypothesis
best describes the data Thus, we may conclude that for Person 1, it is difficult to select a
best hypothesis.

For Person 8, none of the informative hypotheses is preferred over the unconstrained
hypothesis. Thus, for each of the formulated hypotheses, our belief has decreased after
obtaining the data. If we have to select a best hypothesis, however H8

2 and H8
4 are

respectively .16/.03 ≈ 5.3 and .19/.03 ≈ 6.3 times more supported than H8
3 and at least

.16/.01 ≈ .19/.01 ≈ 17 times more supported than H8
1 . However, based on BF8

2�2
= .15 and

BF8
4�4

= .10 we can conclude that although H8
2 and H8

4 are convincingly preferred over the
other two hypotheses, neither is a good hypothesis for this person.

For Person 14, H14
2 is 6.53/.55 ≈ 11.9 times more supported than H14

1 , 6.53/.56 ≈ 11.7
times more supported than H14

3 and 6.53/.78 ≈ 8.4 times more supported than H14
4 . We

find that BF14
2�2

= 8.61, so besides the fact that H14
3 is preferred over the other hypotheses it
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is a good hypothesis, too. Thus, we may conclude that for Person 14 we can find a best
hypothesis that appears to be a good hypothesis, too.

For Person 20, H20
4 is at least 79 times more supported than H20

1 , H20
2 and H20

3 . Thus, H20
4

is the best hypothesis from the set. However, because BF20
4�4

= .65 we can conclude that

even though H20
4 was the best hypothesis, it is not a good description of the data.

These examples show that it differs per person whether a best hypothesis can be detected,
which hypothesis this is, and how strong the evidence is relative to the other hypotheses.
Based on Table 3.2, Zedelius et al. (2011) can conclude for each individual what the best
hypothesis is, and whether it is a good hypothesis. We find that the sample contains persons
for whom a best hypothesis can be detected, but this hypothesis is not a good hypothesis
(Persons 20 and 21). Additionally, there are individuals for whom a best hypothesis can be
detected and the best hypothesis is good (Persons 6, 14, 15, 16, 17, 19, 22 and 23). For the
remaining individuals, no best hypothesis could be selected. Someone else evaluating these
Bayes factors might come to slightly different conclusions, if they apply a different rule to
decide what makes a hypothesis the best from a set.

The second goal of this paper was to determine whether the sample of individuals comes
from a homogeneous population with respect to the support for the hypotheses of interest.
The first impression gained from Table 3.2 is that this is not the case. However, this topic
will be pursued in depth in the next section.

3.4 A P-population of WP-populations

Looking at the Bayes factors in Table 3.2 is a rather ad hoc manner to answer the question
whether the sample comes from a population that is homogeneous in its support for the
the hypotheses under consideration and which hypothesis is the best. By aggregating the
individual Bayes factors we can try to evaluate in more detail to what extent individuals are
homogeneous with respect to a hypothesis. If Hi

m is evaluated for P independent persons
the corresponding individual Bayes factors can be multiplied into a P-population Bayes
factor (Stephan & Penny, 2007):

P-BFmu =

P∏
i=1

BFi
mu, (3.22)

which expresses the support for Hm relative to Hu, where

Hm = H1
m ∪ ... ∪ HP

m, (3.23)

which states that Hi
m holds for every person i = 1, ..., P, and

Hu = H1
u ∪ ... ∪ HP

u , (3.24)

which is the union of Hi
u for i = 1, ..., P. In this section using the Bayes factor, Hi

m and Hm

are compared with Hi
u and Hu, respectively. However, analogously, Hi

u could be replaced
by Hi

m′ or Hi

�m
rendering P-BFmm′ and P-BFm�m

, respectively. Note, that this is not the Bayes
factor describing the relative evidence for Hm and Hm’ with regard to the P-population
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Table 3.2
Individual Bayes factors for the Zedelius (2011) data

i BFi
1u BFi

2u BFi
3u BFi

4u BFi
1�1

BFi
2�2

BFi
3�3

BFi
4�41 0.59 0.93 1.98 0.26 0.59 0.93 2.06 0.15

2 3.33 1.49 4.67 0.45 3.33 1.52 5.54 0.29
3 1.02 1.31 1.63 1.41 1.02 1.33 1.68 2.37
4 0.03 0.10 0.58 1.22 0.03 0.10 0.57 1.55
5 3.79 2.39 4.92 1.02 3.79 2.55 5.91 1.04
6 543.90 17.95 13.74 1.43 551.21 68.72 30.30 2.51
7 1.44 3.45 2.88 1.23 1.44 3.87 3.14 1.58
8 <0.01 0.16 0.02 0.19 <0.01 0.15 0.02 0.10
9 3.06 6.16 3.25 1.94 3.06 7.95 3.59 30.74

10 2.60 3.41 2.75 0.99 2.60 3.81 2.97 0.97
11 0.05 0.24 0.55 1.21 0.05 0.23 0.54 1.53
12 1.29 1.70 1.55 0.44 1.29 1.76 1.58 0.28
13 0.30 3.50 2.66 0.79 0.30 3.93 2.86 0.65
14 0.55 6.53 0.56 0.78 0.55 8.61 0.55 0.64
15 21.84 2.01 6.41 1.73 21.85 2.10 8.35 6.28
16 0.18 0.45 3.21 1.22 0.18 0.44 3.54 1.56
17 22.30 5.15 3.88 1.91 22.31 6.28 4.42 20.64
18 0.32 1.37 0.55 0.62 0.32 1.39 0.54 0.45
19 <0.01 <0.01 0.03 1.96 <0.01 <0.01 0.03 40.41
20 <0.01 <0.01 0.01 0.79 <0.01 <0.01 0.01 0.65
21 0.09 0.41 0.40 1.43 0.09 0.40 0.39 2.50
22 15.78 5.59 4.82 1.58 15.78 6.98 5.77 3.68
23 20.92 4.39 7.62 1.60 20.93 5.15 10.64 3.92
24 0.15 1.16 0.32 1.01 0.15 1.17 0.31 1.02
25 7.21 3.16 3.26 0.76 7.21 3.49 3.61 0.61
26 0.06 0.13 0.38 0.58 0.06 0.13 0.37 0.41

Note. Hi
1 , Hi

2 and Hi
3 (Equations 3.10–3.12) are evaluated against Hi

u and their complement.

parameters π. Individual data could be used to evaluate a Bayes factor with respect to the
P-population π, but our focus here is on the collection of individual WP-populations πi.
Another way to interpret this P-BF is in the context of synthesis of knowledge with respect
to the individual evaluated hypotheses Hi

m. Thus, it is a measure of the extent to which a
hypothesis holds for every individual, rather than on average.

Table 3.3 shows seven hypothetical sets of six individual Bayes factors comparing Hi
m to Hi

u
. The P-BF is presented for each set. For example, Set 1 results in a P-BF of 64, indicating
that it is 64 times more likely that Hi

m holds for all persons i, than that it does not hold for
all persons. However, the table shows an undesirable property of P-BF, namely that it is a
function of P. As can be seen, both in Set 1, 2 and 3, the P-BF is 64. Nevertheless, it is
clear that all individual Bayes factors in Set 1 express stronger evidence than in Sets 2 and
3.

Stephan & Penny (2007) have suggested using the geometric mean of the product of
individual Bayes factors to render a summary that is independent of P:

gP-BFmu =
P
√

P-BFmu, (3.25)

which is a measure of the ‘average’ support in favor of Hm relative to Hu found in P persons.
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In other words, it can be interpreted as the Bayes factor that is expected for the P + 1st

individual sampled from the P-population.

As can be seen in Table 3.3, the gP-BFmu does not depend on P. For example, in Set 1 the
gP-BF is 8.00 and in the larger Sets 2 and 3, the average support for Hm is 2.83 and 2.00,
respectively, while the P-BFmu = 64 for each of these sets.

If multiple hypotheses are considered, gP-BFmm′ and gP-BFm�m
can be derived similar as

BF i
mm′ and BF i

m�m
. It is important to keep in mind that the gP-BFmu is a summary measure

and does not have the same properties as individual Bayes factors. Such a property is that
BF i

mu and BF i
m�m

are always both smaller or larger than 1. For example, if BF1
1u = 0.2, then

BF1
1�1

= 0.4, and if BF2
1u = 1.8 then BF2

1�1
= 9. This is not true for gP-BFmu and gP-BFm�m

.
To continue the example based on the Bayes factors for persons 1 and 2, gP-BF1u = 0.6 and
gP-BF1�1

= 2. For interpretation of the gP-BF, it is important to keep in mind that gP-BFmu

is a summary of all BF i
mu, and thus cannot be translated into gP-BFm�m

, which is a summary
of all BF i

m�m
. Note that if a switch in direction occurs, both geometric Bayes factors are

generally both close to 1, therefore not causing any very contradicting conclusions.

However, the gP-BFmu has another issue. Table 3.3 shows that different sets of individual
Bayes factors can lead to the same gP-BFmu. For example, in Sets 3, 4 and 5 the same
gP-BF is obtained. Set 3 contains only Bayes factors that are close to the gP-BF = 2 and all
support Hi

m. Set 4 seems similar in the strength of support in the individual Bayes factors,
although there seems to be more variation than in Set 3, and we find one Bayes factor that
does not support Hi

m. Finally, Set 5 contains four Bayes factors that express support for
Hi

u over Hi
m, while two Bayes factors express relatively strong support in favor of Hi

m over
Hi

u. The fact that the Bayes factors from Sets 3 and 4 come from populations that are more
homogeneous in their preference for Hi

u than Set 5 is not represented well by the gP-BFmu.
Therefore, an additional measure, the evidence rate (ERmu), is introduced that describes the
consistency in the preferred hypothesis in multiple individual Bayes factors:

ERmu =
1
P
∑P

i=1 IBFi
mu<1 if gP-BFmu < 1

1
P
∑P

i=1 IBFi
mu>1 if gP-BFmu > 1

, (3.26)

where IBFi
mu>1 = 1 if BF i

mu > 1 and 0 otherwise. Thus, the ERmu is the proportion of
individual BF i

mu that expresses support for Hi
m or for Hi

u if the gP-BFmu expresses support
for Hm or Hu, respectively. For example, if gP-BFmu > 1, an ERmu of 1 indicates that all
individual Bayes factors express support for Hi

m. An ER of .5, indicates that 50% of the
individual Bayes factors expresses support for Hi

m, and 50% expresses support for Hi
u. An

ER close to 1 indicates homogeneity among the individual Bayes factors. The lower the ER,
the stronger the evidence that the ordering of the individual success probabilities are not
homogeneous with respect to the hypotheses under consideration. Looking at Table 3.3, we
find that in Set 3 all individual Bayes factors support Hi

m, this is reflected in an ERmu = 1.
In Set 4 most, but not all individual Bayes factors support Hi

m, resulting in ERmu = .83. This
implies that there is no perfect homogeneity among the individual Bayes factors. Finally, in
Set 5, four of six individual Bayes factors support Hi

u, while gP-BFmu supports Hi
m. The

ERmu of .33 indicates that Set 5 is not likely to come from a homogeneous population with
respect to the hypotheses under consideration.

There is still one issue that needs to be resolved. Set 6 and 7 result in the same gP-BFmu
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and ERmu as Set 3, but are not similar in individual contributions. Set 6 contains an outlier
that expresses strong evidence for Hi

m, whereas all other cases express only weak support
for Hi

m. Without this outlier, the gP-BFmu would be much lower. Set 7 contains two Bayes
factors that express very little support for Hi

m, whereas the other four cases express stronger
support for Hi

m. Without these two ‘weak’ cases, the gP-BFmu would be somewhat higher.
In contrast, Set 3 contains Bayes factors that are rather constant around gP-BF, removing
any of these cases would not affect the gP-BFmu too much. To describe presence and
direction of skewness among individual Bayes factors with respect to the gP-BFmu, a final
measure is introduced: the stability rate.

The stability rate (SRmu) is a measure of skewness among individual Bayes factors with
respect to the gP-BFmu. It can be written as:

S Rmu =
1
P
∑P

i=1 IBFi
mu<gP-BFmu

if gP-BFmu < 1
1
P
∑P

i=1 IBFi
mu>gP-BFmu

if gP-BFmu > 1
, (3.27)

where IBFi
mu<gP-BFmu

= 1 if BF i
mu < gP-BFmu and 0 otherwise. The SRmu describes the

proportion of individual Bayes factors that expresses support stronger than the gP-BF for
the hypothesis preferred by gP-BFmu. In Sets 1, 2, 3 and 4 of Table 3.3 the gP-BFmu prefers
Hi

m over Hi
u. Individual Bayes factors that express stronger support for Hi

m than gP-BF are
presented in bold in the table. For each of these sets, the SRmu = .50, indicating that half of
the individual Bayes factors expresses support for Hi

m stronger than gP-BF. The other half
expresses support either for Hi

u or weaker support for Hi
m. An SRmu close to .50 indicates

that the individual Bayes factors are evenly distributed around gP-BF.

An SRmu smaller than .50, as in Set 5 and 6, indicates that less than half of the individual
Bayes factors express stronger support for Hi

m than gP-BF. Consequently, the gP-BFmu is
relatively large because of a minority of individual Bayes factors that are relatively large.
The gP-BFmu is overestimated because of this minority. In Set 5 the gP-BFmu supports Hi

m,
while the majority of individual Bayes factors support Hi

u. The gP-BFmu is no longer a
representative ‘average’ support. Reversely, an SRmu larger than .50 indicates that only
relatively few individual Bayes factors express weaker support than gP-BF (see Set 7). Thus,
for SRmu > .50, the gP-BFmu is relatively close to 1 because of a minority of individual
Bayes factors that express support that is relatively weak. As an effect, the strength of
support is underestimated.

Thus, the gP-BFmu can be used to express the average support of the individual Bayes
factors. In order to assess whether the individual Bayes factors come from a homogeneous
population, the ERmu can be used. A high evidence rate indicates high agreement in
preferred hypothesis among individual Bayes factors, and thus more homogeneity. Finally,
the SRmu gives an indication of how the individual Bayes factors are distributed around the
gP-BFmu. Note that the equations presented for the ER and SR describe those corresponding
to gP-BFmu. If the interest is in gP-BFmm′ or gP-BFm�m

, the ER and SR should be computed
using the individual BF i

mm′s and BF i
m�m

s. The individual Bayes factors are the relevant
quantities in the ER and SR, and therefore these should be used.
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Table 3.3
Hypothetical individual Bayes factors (P = 6), gP-BFmu, ERmu and SRmu.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7
BF1

mu 9.00 3.20 1.40 0.80 0.90 6.40 1.01
BF2

mu 7.11 2.70 2.70 1.50 0.93 1.40 1.30
BF3

mu - 2.30 1.80 2.50 0.85 1.80 2.50
BF4

mu - 3.22 2.10 4.33 0.88 1.40 3.10
BF5

mu - - 1.60 3.10 6.30 1.60 2.60
BF6

mu - - 2.80 1.59 16.23 1.77 2.42
P-BFmu 64.00 64.00 64.00 64.00 64.00 64.00 64.00

gP-BFmu 8.00 2.83 2.00 2.00 2.00 2.00 2.00
ERmu 1 1 1 .83 .33 1 1
S Rmu .50 .50 .50 .50 .33 .17 .67

3.4.1 Illustration

Using the individual Bayes factors presented in Table 3.2 the gP-BFmu, ERmu and SRmu

can be computed for the data of Zedelius et al. (2011). The first row of Table 3.4 gives
the gP-BFmu based on the individual Bayes factors from Table 3.2. The ERmu and SRmu

are presented in the second and third row. Based on the gP-BFmu we can conclude that
H3 receives approximately 1.125/.510 ≈ 2.21 times more support than H1, and only
about 1.125/.910 ≈ 1.125/.949 ≈ 1.2 times more support than H2 and H4. Thus, H3 is
somewhat preferred over H1, but cannot be distinguished from H2 and H4. Furthermore,
since gP-BF2�2

= 1.014, gP-BF3�3
= 1.235 and gP-BF4�4

= 1.412, it can be concluded that
none of the hypotheses is convincingly the best description for all individuals and none of
the hypotheses are clearly a better description of all individuals than their complement is.

Additionally, we find that the ERmu for the comparison of H1 with Hu is .500, indicating
that approximately half of the individual Bayes factors expresses support for Hi

1, while the
other half expresses support for Hi

u. Similarly, ER2u, ER3u and ER4u are .346, .615 and .423
indicating that for these hypotheses, too, there is little homogeneity among the individual
Bayes factors. Only SR1u is rather close to .50, and consequently, it is not likely that the
gP-BFmu is affected by one or more influential cases having a (much) smaller BF than the
majority. For the other hypotheses, there is indication that the strength of the gP-BFmu is
affected by skewness among the individual Bayes factors.

Based on the gP-BFmu, ERmu, and SRmu, we can draw the following conclusions. Firstly,
using the gP-BFmu no hypothesis could be selected as the best hypothesis from the set. The
SRmus indicate that for all hypotheses but Hi

1 imbalance among individual Bayes factors
was present. Furthermore, the relatively low ERmus indicate that it is unlikely that the
individuals come from a homogeneous population with respect to any of the specified
hypotheses. Finally, none of the hypotheses appears to be a good description of the ordering
of the individual success probabilities. Thus, based on these findings it seems unlikely
the P-population is homogeneous with respect to the WP-population hypotheses that were
considered.
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A within-person experiment, such as conducted by Zedelius et al. (2011), is quite
common in social and neuro-psychological research. The theory and hypotheses for these
experiments are often at the WP-population level. Examples are Moreland & Zajonc (1982),
who wonder “. . . whether mere exposure to other people [. . . ] is a sufficient condition
for the enhancement of their perceived similarity to ourselves.” (p. 397) and Klimecki et
al. (2016), who hypothesize that “. . . altruistic motivation is elicited by empathy felt for
a person in need.” (p. 1). Zedelius et al. (2011) write that “. . . rewards cause people to
invest more effort in a task. . . ”, “. . . the intriguing hypothesis that [. . . ] reflective thoughts
hinder ongoing performance. . . ” (p. 355) and “. . . participants performed significantly
better. . . ” (p.356). These fragments contain theory or expectations regarding the behavior
of individual people.

Although WP-population hypotheses are formulated, the analyses are usually executed at
the P-population level. In the original Zedelius et al. (2011) paper, the data were analyzed by
means of a repeated measures ANOVA, which tests differences in the P-population means.
The conclusions obtained from this analysis imply that H2 holds at the P-population level.
Often the, usually implicit, assumption is that if a hypothesis holds at the P-population level,
it holds for all individuals. The current analysis shows that although H2 is a reasonable
hypothesis at the P-population level, it appears not to be the single best hypothesis under
consideration and is not a good hypothesis for all individuals. The assumption that an
average conclusion holds for all individuals is in this case violated. It is important that
psychological researchers are aware of the fact that conclusions at the P-population level
cannot be transferred to the individual level without testing this. Within-person experiments
offer rich data that allow for the evaluation of individual hypotheses, through which the
assumption that a hypothesis holds for everyone can be tested. This paper introduces an
approach with which this can be done.

Table 3.4
The gP-BF, ER and SR for the data of Zedelius et al. (2011).

BF1u BF2u BF3u BF4u BF1�1
BF2�2

BF3�3
BF4�4

gP-BF 0.510 0.910 1.125 0.949 0.511 1.014 1.235 1.412
ER 0.500 0.346 0.615 0.423 0.500 0.654 0.615 0.577
SR 0.423 0.308 0.615 0.385 0.423 0.654 0.615 0.500

Note.The hypotheses evaluated are Hi
1, Hi

2, Hi
3 and Hi

4 as in Equations 3.10–3.13 and their
complement.

3.5 Determining the sample size and number of replications
for a study

Say, a researcher has a research question that he wants to test by means of an experiment.
This research question defines which and how many conditions J should be considered
and results in one or multiple hypotheses of interest. The researcher is then left with two
choices regarding the experiment, namely, the number of replications R used in each trial
and the sample size P. This section will describe a method to choose R and P.

62



In the previous section, a method to evaluate a set of individual Bayes factors has been
introduced in the form of three measures: gP-BFmu, ERmu and SRmu. It is important to
investigate the properties of these measures as a function of sample size and the number of
replications. In other words, if indeed all individuals are homogeneous with respect to an
individual informative hypothesis, which are the sample size and number of replications
required for gP-BFmu, ERmu and SRmu to succeed in detecting this and, analogously, if
individuals are not homogeneous, can this be derived from these measures?

Through a sensitivity analysis it can be determined for which sample size and number of
replications the gP-BFmu can be expected to prefer the hypothesis that is in agreement with
the true P-population, the ERmu is sufficiently high and SRmu is close to .5. The choice for
what values the gP-BFmu, ERmu and SRmu behave as desired is subjective. In line with our
reasoning for the interpretation of individual Bayes factors as described on page 55, the
choice for when the strength of support in gP-BF is sufficient to prefer one hypothesis over
another is subjective and no guidelines are provided. Additionally, we will consider .9 to be
sufficiently high for the ERmu, that is, a maximum 10% of individual Bayes factors prefers
a different hypothesis than the majority, and a .1 margin around .5 to be reasonable for the
SRmu, that is, the proportion of individual Bayes factors expressing stronger support than
gP-BFmu is between .4 and .6.

Using R (R Core Team, 2013), software has been developed with which such a study design
analysis can be executed2. While discussing the options of this program, we focus on
the evaluation of gP-BFm�m

, in order to arrive at an appropriate study design to determine
whether Hi

m holds for everyone in the P-population. The program can analogously be used
for Study design analyses for gP-BFmm′ or gP-BFmu. The required input and the algorithm
used are illustrated using Zedelius et al. (2011), as it could have been conducted before
starting the data collection.

The R program requires as input the number of conditions J and hypotheses that a researcher
wants to investigate. Additionally, the numbers of replications R and the sample sizes P
that a researcher is willing to consider should be specified. Using this input, the following
steps are executed:

• For each hypothesis of interest Hi
m, three P-populations are specified, one where

Hi
m is true for all WP-populations, one where Hi

�m
is true for all WP-populations

and a mixture of these two populations. In the next section these P-populations are
specified in more detail for the example from Zedelius et al. (2011).

• For each P-population, the program generates 10, 000 WP-populations, that is,
parameter vectors πi of size J.

• For each R specified by the user, xi is sampled from πi.

• For each xi, BF i
m�m

is computed.

This results in 10, 000 individual Bayes factors for each combination P-population and
R. For computational reasons, this set will be used as a surrogate for the true infinite
P-population. For each surrogate P-population then the following steps are followed:

2The software with accompanying manual can be downloaded on https://github.com/fayetteklaassen/OneForAll,
or be obtained by contacting the first author at klaassen.fayette@gmail.com. For assistence with or questions
about the software, please also contact the first author.
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• For each sample size P and number of replications R, 1000 sets of individual Bayes
factors are sampled with replacement from the surrogate P-population.

• For each set, the gP-BFmu, ERmu and SRmu are computed, resulting in 1000 values of
each measure for every sample size P and number of replications R.

• From these 1000 values of gP-BFmu, ERmu and SRmu the 2.5, 50 and 97.5 percentiles
are obtained. The 50 percentile, the median, is used to summarize what values can
be expected for each of these measures. The desired values of these expectations
are, as described above subjectively defined, for the gP-BFmu, above .9 for the ERmu

and within a .1 margin from .5 for the SR. The 2.5 and 97.5 percentiles indicate the
range in which 95% of the sampled gP-BFmu, ERmu and SRmu lay. If this range is
very wide and includes non-reasonable values the combination of R and P might not
be appropriate even when the expected value is of a desired level. In the next section
we will illustrate how this information can be used to determine the R and P required
to execute a study.

3.5.1 Illustration

This section describes a sensitivity analysis for the determination of the number of
replications R and sample size P, where the setup of Zedelius et al. (2011) will be used as
starting point. Of course, such an analysis should be executed prior to the data collection,
which was already done by Zedelius et al. (2011). However, for the illustration we will do
the analysis as if no data has been collected yet. This will provide us with the knowledge
whether the eventually chosen R and P were sufficient according to the sensitivity analysis.
The first step of the sensitivity analysis described in the previous section requires a research
question leading to the number of conditions J and a set of hypotheses representing
the researchers’ expectations. The research question of Zedelius et al. rendered three
hypotheses, Equations 3.10–3.12, about the ordering of success probabilities in the J = 8
experimental conditions. For this illustration, only Hi

1 as in Equation 3.2 is considered.
This results in the following parameters for the sensitivity analysis:

• Number of conditions. Zedelius et al. (2011) considered 8 different conditions, so
J = 8.

• Hypothesis. The hypothesis that will be considered for this illustration is Hi
1 . From

this hypothesis, three relevant P-populations are derived.

P-population 1. In this P-population all individuals adhere to Hi
1 . Using this

population the median values of the gP-BFmu, ERmu and SRmu can be determined if
Hi

m holds for everyone. To compute these median values the individual parameters πi

are repeatedly sampled from the prior distribution under Hi
1:

h(πi|Hi
1) ∝ h(πi|Hi

u)Iπi∈Hi
1
, (3.28)

where Iπi∈Hi
1

= 1 if πi is in agreement with Hi
1 and 0 otherwise.

P-population 2. In this P-population all individuals adhere to H
�1
. Using this

population the expected values of the gP-BFmu, ERmu and SRmu can be determined
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if Hi

�m
holds for everyone. The individual parameters πi are sampled from the prior

distribution under Hi

�1
, that is:

h(πi|Hi

�1
) ∝ h(πi|Hi

u)Iπi∈Hi

�1
, (3.29)

where Iπi∈Hi

�1
= 1 if πi is in agreement with Hi

�1
and 0 otherwise.

P-population 3. For the third P-population, a mixture of P-population 1 and 2
is considered. Using this population the expected values of the gP-BF, ER and SR
can be determined if Hi

m holds for a proportion θ of individuals in the P-populations,
and H j

�m
holds for a proportion 1 − θ of individuals. The individual parameters πi are

sampled from Equation 3.28 if ui, sampled from U(0, 1) is smaller than or equal to
the specified proportion θ, and sampled from Equation 3.29 if ui is larger than θ:

πi ∼
h(πi|Hi

1) if ui ≤ θ
h(πi|Hi

�1
) if ui > θ . (3.30)

The proportion θ is set to .5, thus half of all individuals adheres to Hi
1 and the other

half adheres to Hi

�1
.

Next, the sample sizes P and number of replications R that the researchers want to consider
should be chosen. Based on the choices made by Zedelius et al. (2011), the following
values for P and R are considered for the sensitivity analysis:

• Number of replications. Zedelius et al. (2011) used 7 replications in their experiment.
Additionally, it would be interesting whether more replications would result in better
performance, therefore R = 7, 14, 21 are considered.

• Number of individuals. Zedelius et al. (2011) used 26 participants in their
experiment. In order to mimic an a priori sensitivity analysis, the sample
sizesP = 5, 7, 10, 15, 20, 25, 30, 40, 50 are considered.

3.5.2 Results

Figure 3.2 shows the results of the sensitivity analysis for the determination of sample size
P and number of replications R. The results are presented for each of the three simulated
P-populations described in the previous section. The first column of the figure shows the
performance of the gP-BFmu, ERmu and SRmu if Hi

1 is true for all individuals (P-population
1). As can be seen in the top left figure, already for small sample sizes the gP-BFmu

expresses strong support for H1: the lower 2.5 percentile of the gP-BFmu is larger then
10 for R > 7 and P > 5. The lower 2.5th percentile of the ERmu only stabilizes above
.9 for R = 7 and P > 30 and for R = 14, 21, this is already achieved for P > 10. Stated
otherwise, if Hi

1 holds for all individuals, for samples larger than 30 it is likely that less then
10 per cent of individual Bayes factors express support for Hi

�1
. Finally, the bottom panel

shows that the SRmu stabilizes around .55, reflecting that it is reasonable to expect slightly
more than half of the individual Bayes factors to express stronger support than gP-BFmu.
This implies that the gP-BFmu is, on average, slightly more influenced by the ‘weaker’ and
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contradicting individual Bayes factors. The 2.5 and 97.5 percentiles are within a margin of
.1 from the median gP-BF for P > 25. Furthermore, we see that from around P = 25 the
median and 2.5 and 97.5 percentiles stabilize. Thus, if Hi

1 is true for all individuals, with
sample size P around 25 − 30 and R = 7, the gP-BFmu and ERmu perform as desired: the
gP-BFmu shows strong evidence for the true hypothesis, the ERmu is high and the SRmu is
around .5.

In the middle column of figures in Figure 3.2 Hi

�1
is true for all individuals. For P > 10

and R > 7, the gP-BF is smaller than .01, indicating at least 10 times more support for Hi

�1
than for Hi

1. As R increases, so does the median support found in the data. The lower 2.5
percentile of the ER is above .9 for P > 30 and R = 14, 21 and close to .9 for R = 7. The
median SR is almost exactly .5 for all R for P > 20, and the 2.5 and 97.5 percentiles are
within .1 of the median for P > 30. Thus, for sample sizes of 30 and larger, the gP-BFmu,
ERmu and SRmu behave as desired for R = 7 and even better for R = 14, 21.

Finally, Population 3, depicted in the right column in Figure 3.2 was chosen to be a mixture
of the first two populations. Here it can be seen that if Hi

1 holds for 50% of the individuals
in the population, generally, Hi

�1
is preferred over Hi

1, although with less strength than when
Population 2 was the true population. Note that this happens because it is more likely that a
person coming from h(πi|Hi

1) provides evidence in agreement with Hi

�1
than vice versa. For

example, if H1 is true but if the ordering in the data is off by one order constraint, we are
likely to prefer H

�1
. However, if one of the orderings that comprises H

�1
is true, a ‘mistake’

in one or more of the order constraints in the data does not necessarily lead to a preference
for H1, but might point to one of the other orderings under H

�1
. The complexity of H1 is

2.48 × 10−5 and the complexity of Hancel1 is 1 − 2.48 × 10−5 ≈ 1. Thus, even though θ = .5,
Hi

�1
is preferred because it has a higher complexity. The ERm�m

is of use here, indicating
that there are multiple populations and stabilizing around .5 for P > 30. Although the
median support found in the gP-BFm�m

might indicate a preference for Hi

�1
over Hi

1 , the
ERm�m

indicates inconsistency among individual Bayes factors. Finally, the median SRm�mfor this population is slightly below .5, and the 2.5 and 97.5 percentiles are further than .1
from this median until P is around 40, for R = 14, 21 or 50 for R = 7. Thus, if neither of
the two hypotheses hold for everyone, this is reflected in the ERm�m

for every P and R that
seemed reasonable if Hi

1 or Hi

�1
were true for everyone.

Zedelius et al. (2011) eventually used 26 participants in their study and 7 replications. This
is slightly lower than the suggested 30 based on the sensitivity analysis. Consulting the
figures, it seems that, if Hi

1 is true and P = 26 and R = 7, gP-BF1�1
is expected to be between

30 and 100, the ER1�1
is expected to be above .9 and the SR1�1

between .43 and .67. On the
other hand, if Hi

�1
is true for all individuals, the gP-BF1�1

can be expected between 1000

and 10, 000 in support of Hi

�1
, with the ER1�1

similarly above .9 and the SR1�1
between .35

and .6. Consulting the results in Table 3.4, we find that gP-BF1�1
= .511, ERmu= .500 and

SRmu= .436. These results do not seem in line with either Population 1 or 2, but consulting
the right column figures in Figure 3.2, they do seem in line with the mixture population. Of
course, this is no evidence that indeed this mixture population with θ = .5 is the most likely
true P-population. However, it does indicate that even though the gP-BF1�1

shows some
support for Hi

�1
relative to Hi

1, it is not likely that Hi

�1
holds for everyone in the P-population.
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Figure 3.2. gP-BFi
1�1

, ERi
1�1

and SRi
1�1

for the three generated true P-populations for J = 8.
P-population 1 is described in Equation 3.28, P-population 2 in Equation 3.29, and
P-population 3 in Equation 3.30.
Both the median and 95% interval are shown in the figures.
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3.6 Discussion

After formulating within-person (WP) hypotheses, individual Bayes factors can be
computed with which the support for a particular hypothesis can be derived for each person,
or the best from a set of informative hypotheses can be selected. A method has been
proposed to combine the individual Bayes factors of some, in order to draw conclusions for
all - by answering the question whether an individual hypothesis holds for all persons in
the population - and for one by determining the average support for Hi

m relative to Hi
m′

which describes what could be expected for a next individual. The geometric average
of P individual Bayes factors (gP-BF) describes the average support for one hypothesis
relative to another. It describes what individual Bayes factor could be expected for a next
person. Together with the Evidence Rate and Stability Rate, the gP-BF can be used to
assess whether one hypothesis is more supported than another for all individuals in a
population. By means of a sensitivity analysis for a set of hypotheses, it can be determined
for what sample size P and number of replications R in an experiment these measures
behave desirable.

An R Shiny application has been developed with which a sensitivity analysis can be executed
prior to data collection. By specifying hypotheses of interest, the behavior of gP-BF, ER
and SR can be evaluated for various combinations of R and P. This allows researchers
to collect the appropriate data for their question of interest. Besides an own sensitivity
analysis, the data of the simulations used as examples in this paper can be accessed and
viewed within the application. Furthermore, in the application data can be analyzed and
the gP-BF, ER and SR are computed. The application and manual can be accessed on
https://github.com/fayetteklaassen/OneForAll.
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Chapter 4

Combining evidence over
multiple individual analyses

by F. Klaassen1

4.1 Introduction

Hypothesis testing is omnipresent in behavioral and biomedical research, and usually
concerns testing for population effects. For example, is there a difference between groups
on average? This chapter presents a Bayesian method to evaluate hypotheses for each
person in a sample and aggregate this result to answer the question whether a hypothesis
holds for everyone in the sample, rather than on average. Using an empirical dataset,
the methodology is illustrated step by step: from formulating the research question and
hypotheses, to modelling the data and drawing conclusions. This chapter is structured as
follows. First, informative hypotheses and Bayes factors are introduced and explained in
Section 4.2. Next, a dataset and corresponding set of hypotheses is introduced in Section 4.3
that can be used for the question Does everyone have the same best informative hypothesis?
Section 4.4 describes how individual Bayes factors can be interpreted. Section 4.5 explains
how these individual Bayes factors can be combined. Throughout these sections, the
methods are applied to the example dataset and hypotheses. Finally, in Section 4.6 the
conclusions and limitations are discussed.

1In press as Klaassen, F. (in press). Combining evidence over multiple individual analyses. In R. Van de
Schoot & M. Miočević (Eds.), Small sample size solutions: A guide for applied researchers and practitioners.
Routledge.
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4.2 Informative hypotheses and Bayes factors

Analysis of variance (i.e., ANOVA) and regression models are frequently used in behavioral
and biomedical research. For example, consider a psychology researcher interested in
the effect of interference on a memory task. The researcher plans an experiment where
participants are presented a word to memorize, followed by a mask, and then asked to
recall the word. The mask is a random sequence of letters (non-word), a word that differs
by one letter from the target word (similar word), or a random word (different word).
The outcome variable is reaction time. The researcher intends to test the null hypothesis
H0 : µnon−word = µdi f f erent word = µsimilar word that the mean reaction times in the three
conditions are equal to one another against the unconstrained alternative Ha : not H0, which
states the expectation that at least one of the condition mean reaction times is not equal to
the other conditions.

Analyzing the data by means of null hypothesis significance testing (NHST) on the group
mean response times implies the research question is whether the theory that all condition
means are equal (i.e., there is no difference in accuracy between the different conditions) can
be rejected. The actual research question might deviate from this assumption in two ways.
First, the researcher might not be interested in rejecting the null hypothesis, but in finding
evidence for a specific theory (Klugkist et al., 2011; van de Schoot et al., 2011). Specific
expectations can be tested via one sided or post hoc testing in some cases (Silvapulle &
Sen, 2004). Alternatively, these expectations can be evaluated directly by formulating
informative or order constrained hypotheses, see Hoijtink (2012) or Chapter 11, Vanbrabant
& Rosseel (2020). Second, the researcher might not be interested in whether the average
response time is equal across conditions, but whether the score for each person is equal
across groups.

If researchers have specific expectations, they can formulate so-called informative
hypotheses (Hoijtink, 2012; Klugkist et al., 2005). Combinations of order and equality
constraints can be placed on the parameters to express an informed expectation. For
example, H1 : µsimilar word > µdi f f erent word > µnon−word describes the expectation
that the mean reaction time in the similar word condition is larger than the mean
reaction time in the different word condition, which in turn is larger than the
average response time in the non-word condition. Another informative hypothesis is
H2 : µsimilar word > µdi f f erent word, µnon−word, which describes the expectation that the average
reaction time in the similar word condition is larger than both other conditions, with no
expected ordering between those average reaction times. Hypotheses with order constraints
(‘<’ and ‘>’) are also referred to as order constrained hypotheses. Such informative
hypotheses can be compared to each other by means of an F-bar test (Silvapulle & Sen,
2004; Vanbrabant & Rosseel, 2020; Vanbrabant, Schoot, & Rosseel, 2015) or with Bayes
factors (Hoijtink, 2012; Klugkist et al., 2005), that are used for the method in this chapter.
Bayes factors are defined in Bayes’ theorem, that describes how knowledge about the
relative belief in hypotheses can be updated with evidence in data:

P (H1)
P (H2)

×
P (D|H1)
P (D|H2)

=
P (H1|D)
P (H2|D)

(4.1)
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Equation 4.1 shows how the prior odds P(H1)
P(H2) , the ratio of the prior probability of H1 and H2

can be updated with the Bayes factor P(D|H1)
P(D|H2) , the relative evidence in the data for H1 and H2

into the posterior odds P(H1 |D)
P(H2 |D) , the relative probabilities of the hypotheses, given the data.

A Bayes factor then quantifies the relative evidence in the data for two hypotheses (Kass
& Raftery, 1995). Thus, BF12 = 10 means that H1 is supported 10 times more by the data
than H2. Alternatively, BF12 = .5 means that H1 is .5 times as much supported by the data
than H2, or in other words, H2 is 1/.5 = 2 times more supported than H1. In addition to
compare the evidence for a pair of hypotheses, the Bayes factor can be used to find which
hypothesis from a set is most supported by the data. The computation of Bayes factors
used in this chapter relies on vast literature on the topic. This will not be discussed in detail
here, but the interested reader is referred to Kass & Raftery (1995). The computation of
Bayes factors for informative hypotheses with inequality constraints is described in Hoijtink
(2012), Klugkist et al. (2005), Klugkist, Laudy, & Hoijtink (2010) and Mulder, Hoijtink, &
Klugkist (2010).

Common statistical analyses, like ANOVA and regression, test for the presence of group
level effects. If BF12 = 10, we have 10 times more support that the mean reaction times are
ordered like in H1 compared to the ordering in H2. However, if an effect detected at the
group level this does not imply that the effect is true for each individual (Hamaker, 2012).
For example, it might be that for part of the population H1 reflects the true average reaction
times well, but that for another part of the population, there is no effect of condition (H0).
At the group level, the conditions appear to have an effect, but this is not true for every
individual. A researcher might not be interested in the average differences between groups,
but in the **individual* effects (Haaf & Rouder, 2017; Molenaar, 2004). The data can
also be used to analyze hypotheses on a case by case level by computing a BF for each
individual. If a researcher is interested in answering the question whether an informative
hypothesis holds for everyone in a sample, he needs to be able to synthesize the BFs from
single-case analyses into an aggregate BF.

4.3 Data, model and hypotheses

This section introduces the Time Estimation dataset that is used as an example throughout
this chapter. The individual level model and hypotheses considered for this dataset are
presented. The first paragraph introduces the model at the individual level. The next
paragraphs introduce the informative hypotheses considered for the parameters in this
model. The difference between individual and average hypotheses is discussed.

The Time Estmation dataset is presented in Ham (2019). This dataset consists of the results
of a within-subject experiment where 29 participants were each exposed to movie clips in 2
conditions. In each condition, participants watched 10 movie clips of 7 − 90 seconds and
rated the emotional valence and arousal on a 9-point Likert scale they experienced after
each clip and estimated the duration of the clip. The content of the movies was chosen
such that the set contained a range of levels of arousal and emotional valence (e.g., starving
lion, coconut shells; Ham (2019)). Of the 20 movie clips in total, 10 were presented in the
Virtual Reality (VR) condition, where participants wore a VR headset and 10 clips were
presented in a real life (RL) scenario in the cinema. The main interest of this experiment
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is the effect of condition, valence and arousal on the relative time estimation. That is, the
interest is in the extent to which the mode of watching a clip, its perceived valence and
arousal affect how much duration estimates deviate relative to the true duration.

4.3.1 Individual Level Model

Testing whether a hypothesis holds for all individuals requires data to be collected for
multiple individuals and have multiple measurements for each person to estimate the
individual parameters. The example data illustrated in the previous section has a nested
structure. That is, the available measurements are nested within individuals. For each
person i = 1, ...,N a complete dataset of 20 measurements is available. Since the interest
of the research is to measure the effect of Valence, Arousal and Condition on the Relative
Time Estimation, the data are modelled using the following regression model:

RelTimeEstij = βi
0 + βi

cConditioni
j + βi

vValencei
j + βi

aArousalij + ei
j (4.2)

where the Relative Time Estimation (RelTimeEst) of person i to movie j = 1, ..., J is
predicted based on the Condition that movie was presented in (VR = 0, RL = 1), the rated
Valence and the rated Arousal of the movie clip. By modelling the data for each individual
in a separate regression model we can make predictions at the individual level.

4.3.2 Hypotheses

Hypotheses can be formed for the parameters of any individual model. A researcher could
be interested in testing the null hypothesis

Hi
0 : βi

condition = βi
valence = βi

arousal = 0 (4.3)

Note that Hi
0 is the null hypothesis for person i, meaning that N=29 null hypotheses can be

formulated. The superscript differentiates Hi
0 from the average null hypothesis

H0 : βcondition = βvalence = βarousal = 0 (4.4)

that hypothesizes the average effect of condition, valence and arousal to be all zero.

A researcher could be interested in whether for all participants H_0ˆi is a good hypothesis.
This can be represented in the following so-called For-all-hypothesis:

H∀i
(·) : H1

(·)& . . . &Hi
(·) & . . . &HI

(·) (4.5)

where the superscript ∀i means that for all i = 1, . . . ,N, the subscript (·) indicates a common
hypothesis number such that the For-all-hypothesis H∀i

(·) expresses the expecatation that Hi
(·)

holds for all individuals i.

72



Ham (2019) were not interested in testing the null hypothesis as shown in Equation 4.4.
Rather, they had formulated three informative hypotheses about the population regression
coefficients. These hypotheses are presented in the left column of Table 4.1. H1 specifies
the expectation that that there is no effect of condition, while valance and arousal have
a positive effect on relative time estimation, while H2 describes the expectation that all
regression coefficients are positive. Finally, H1c is the complement of H1 and specifies
the expectation that at least one of the regression coefficients for arousal and valence is
not positive or that the effect of condition is different from zero. The equivalent of these
average hypotheses was considered at the individual level. These individual hypotheses are
presented in the right column of Table 4.1. The only difference with the population level
hypotheses is that the hypotheses now concern individual regression coefficients rather than
population regression coefficients.

Table 4.1
Hypotheses considered for the Time Estimation data.

Population hypotheses Individual hypotheses
H1 : βc = 0, βv > 0, βa > 0 Hi

1 : βi
c = 0, βi

v > 0, βi
a > 0

H2 : βc > 0, βv > 0, βa > 0 Hi
2 : βi

c > 0, βi
v > 0, βi

a > 0
H1c : not H1 Hi

1c : not Hi
1

Note. The left column presents the population hypotheses considered in the original paper by Van
der Ham et al. (2019). The right column presents the equivalence of these hypotheses in

subject-specific hypotheses, considered in the current chapter. βc = βcondition, βv = βvalence and
βa = βarousal.

Summing up, this chapter considers evaluating the same hypothesis at the individual level
over a group of individuals, to evaluate whether a theory holds for everyone. These
hypotheses can take the form of informative hypotheses, that are translated expectations
from theories, rather than a standard null or alternative hypothesis.

4.4 Individual Bayes factors

Bayesian statistics is well suited to compare multiple hypotheses, whether they are null
hypotheses, unconstrained or informative, like introduced in the previous section. A Bayes
factor quantifies the relative evidence in the data for two hypotheses (Kass & Raftery, 1995).
More specifically, a Bayes factor is the rate with which the prior beliefs are updated into
posterior beliefs, as shown in Equation 4.1. That is, prior to data collection, a researcher
already has knowledge about the probability of two hypotheses, that can be quantified to
express their relative probability. For example, if the researcher expects both hypotheses
equally probable before observing the data, the prior ratio is 0.5/0.5. The prior ratio is
updated with data and the resulting Bayes factor then quantifies how the data influenced this
prior knowledge, summing up an updated ratio. Bayes factors are mostly used to evaluate
hypotheses on population effects (i.e., there are no differences in the average reaction times
between the conditions). In this chapter, the interest is in describing the relative evidence
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for two hypotheses for a specific individual. For this purpose, the BF can be computed per
subject. Section 4.5 demonstrates how this individual level evidence can be synthesized.

To analyze individual hypotheses presented in Table 4.1 using BFs, two steps need to
be executed. First, the hypotheses need to be evaluated separately which is described
in this section. In the next section it is demonstrated how the individual Bayes factors
can be aggregated. For binomial data (e.g., number of successful trials per condition), a
stand-alone Shiny application is also available to evaluate and aggregate individual level
hypotheses (Klaassen, Zedelius, Veling, Aarts, & Hoijtink, 2017).

4.4.1 Analysis

The R (R Core Team, 2013) package bain, developed by (Gu, Mulder, & Hoijtink, 2017)
was used to evaluate informative hypotheses for each person.

All code presented in this chapter is also available on https://github.com/fayetteklaassen/

gpbf. To read the data into R the following code can be used:

# install bain
install.packages("bain")
# load bain
library("bain")

Next, the data can be loaded with:

# read data from the online repository
data <- read.table(file =
"https://raw.githubusercontent.com/fayetteklaassen
/gpbf/master/data.txt",
header = TRUE)

# Determine the number of unique ppnrs = the number of cases
N <- length(unique(data$ppnr))

Next, a Bayes factor has to be computed for each person, for the hypotheses in Table 4.1 The
code below first creates an empty list to store the results of each person in. Inspecting the
names() of the data, tells us how the variables are stored in R, so that these names can be
used in later functions. A random seed is set to make the results replicable. Next, a loop over
all subjects is created, such that the data of that subject is selected. The function bain()
requires the estimates of the linear model as input. These are obtained by running the linear
regression model lm(), where TimePerception is predicted by Condition, Valence and
Arousal. Finally, the function bain() is executed, where the estimates of the linear model
for person i are used to evaluate the hypotheses provided. The hypotheses can be entered in
quotation marks, separating hypotheses by a semicolon. The names of the variables that
were inspected earlier can be used to refer to the relevant regression coefficients.

# create an empty list to store results
results <- vector("list", length = N)

names(data)

## [1] "ppnr" "TimePerception" "Valence" "Arousal"
## [5] "Condition"
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set.seed(7561) # seed to create replicable results
for(i in 1:N) { # loop over N individuals
data_i <- data[data$ppnr == i,] # subset data for ppnr == i

fit_i <- lm(formula = TimePerception ~ Condition + Valence +
Arousal,

data = data_i) # execute linear model
# save the results of Bain analysis.
results[[i]] <- bain(fit_i, "Condition>0 & Valence>0 & Arousal>0;

Condition=0 & Valence>0 & Arousal>0")
}

4.4.2 Results

To obtain the final results, the code below can be executed. First, looking at the names of the
bain output for the first person tells us there is an object named fit and a BFmatrix resulting
from the analysis. The column labeled BF (the seventh column) of the fit object contains
the Bayes factors of each hypothesis, Hi

1 and Hi
2 in Table 4.1, against their complement

(Hi
1c and Hi

2c). The BFmatrix contains the Bayes factors comparing Hi
1 to Hi

2 and vice
versa. The first row and second column contains the BF i

12.

# view the names of the bain output for first person ([[1]])
names(results[[1]])

## [1] "fit" "BFmatrix"
## [3] "b" "prior"
## [5] "posterior" "call"
## [7] "model" "hypotheses"
## [9] "independent_restrictions" "estimates"
## [11] "n"

# view the output of fit and BFmatrix
results[[1]]$fit

## Fit_eq Com_eq Fit_in Com_in Fit Com
## H1 1.000000 1.000000 0.003379835 0.1510565 0.003379835 0.1510565
## H2 0.691829 1.627527 0.091963982 0.2379305 0.063623352 0.3872382
## Hu NA NA NA NA NA NA
## BF PMPa PMPb
## H1 0.01905922 0.1198588 0.0188549
## H2 0.16430028 0.8801412 0.1384543
## Hu NA NA 0.8426908

results[[1]]$BFmatrix

## H1 H2
## H1 1.000000 0.1361814
## H2 7.343149 1.0000000
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To collect the relevant results for all subjects, the following code can be used. First, an
output table is created, with two columns and N rows. Next, a loop over all persons saves
the relevant Bayes factors in this output matrix.

# create output table with N rows and 4 columns
output <- matrix(0, nrow = N, ncol = 2)
# name the columns of the output
colnames(output) <- c("BF1c", "BF12")

# loop over persons
for(i in 1:N){
# obtain the fit table of person i
BFtab <- results[[i]]$fit
# extract relevant BFs
# row 1 (hypothesis 1), column 7 (BF H1 vs complement)
BF1c <- results[[i]]$fit[1,7]
# BF H1 vs H2
BF12 <- results[[i]]$BFmatrix[1,2]
# save BFs in the i-th row of the output matrix
output[i,] <- c(BF1c,BF12)

}
# view the final output
output

The individual Bayes factors are presented in Table 4.2. The table shows that Hi
1 is preferred

over Hi
1c for 16 out of 29 subjects, and preferred over Hi

2 for 22 out of 29 subjects. The
next step is to synthesize this evidence into an aggregated BF for H∀i

(·).

4.5 Aggregating Bayes factors

Independent Bayes factors can be aggregated into a combined Bayes factor by taking their
product (Klaassen et al., 2017). The interpretation of this product is the evidence that
H1 is preferred over H2 for persons 1, ...,N, where N is the number of individuals. This
again shows that the individuals are evaluated separately: their evidence is combined but
kept intact at the individual level. The scale of this product depends on the number of
observations included and is therefore difficult to compare from study to study. To make the
output comparable over studies, we can take the geometric mean of the product of Bayes
factors, the gPBF. This is the equivalent to an average, but then for products rather than a
sum. The gPBF is the average relative evidence for two hypotheses in an individual. We
can evaluate how many of the individual Bayes factors describe evidence in favor of the
same hypothesis as the gPBF. This is called the Evidence Rate (ER). The ER is used to
evaluate to what extent individuals indeed come from the same population. If the ER is
1, all individuals show evidence for the preferred hypothesis by the gPBF. If the ER is
(near) 0, almost no individuals show evidence for the preferred hypothesis by the gPBF.
Another measure that can be used to evaluate the geometric mean and the individual Bayes
factors is the Stability Rate (SR). This is the proportion of individual Bayes factors that
expresses evidence for the same hypothesis as the gPBF, but with stronger evidence. This
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quantifies the (in)balance of individual Bayes factors. If it is .5, the gPBF is affected equally
by larger a smaller Bayes factors, while if it is close to 1, most cases express evidence
stronger than the mean itself, and only a few cases with relatively weak or reverse evidence
diminish the effect. If the SR is close to 0, this indicates that the gPBF is determined by a
few strong cases, with most other cases expressing weaker evidence or reverse evidence.
Together, these three measures (gPBF, ER and SR) provide information about how uniform
the population can be expected to be with regard to the considered hypotheses, and what
the expected relative evidence is for a next person. In what follows it is explained how the
evidence of multiple individual Bayes factors can be aggregated to answer the question
‘does everyone?’. The results of the example analysis are presented and interpreted.

4.5.1 Analysis

The individual Bayes factors can then be aggregated using a function available on www.
github.com/fayetteklaassen/gpbf. The function requires as input a matrix with N rows and
K columns, where N represents the total of individuals and K the number of Bayes factors
for which the aggregate conclusion is of interest. The output of the individual analyses
created in the previous section fulfills this requirement and can be used in the function.
The output of the function is a list that contains: a table containing the gPBF for all Bayes
factors considered; the individual Bayes factors used as input; and the sample size N.

# execute the gPBF function on the output from previous section
gpout <- gPBF(output)
# view the output
gpout

The function can be applied to any collection of individual Bayes factors. If you use your
own software to compute Bayes factors at the individual level, and create a matrix of N rows
and K columns, the function gPBF() can be applied. This function computes the geometric
product over all N individuals for each of the K comparisons of interest (for example,
K = 3, with BF12, BF1c and BF12). The Evidence Rate is computed as the proportion of
individual BFs support the same hypothesis as the gPBF, and the SR is computed as the
proportion of individual BFs that express stronger evidence as the gPBF.

4.5.2 Results

Table 4.3 presents the geometric means of the product of individual Bayes factors (gPBF),
the Evidence Rate (ER) and the Stability Rate (SR) for the Time Estimation data.

The results show that based on the gPBF there is no clear evidence that Hi
1 is preferred over

Hi
1c or Hi

2 for everyone, or vice versa. Specifically, Table 4.3 shows that gPBF1c = .649,
indicating that the average individual evidence is 1.54 times stronger in favor of Hi

1c
compared to Hi

1. The ER for BF∀i
1c shows that the proportion of individual Bayes factors

preferring Hi
1c is .448, quantifying the earlier observation that 44.8% of individual Bayes

factors prefer Hi
1c over Hi

1. The SR of .345 indicates that there are relatively few cases
expressing stronger evidence in favor of Hi

1 than the gPBF. Together with the weak evidence,
this indicates that the hypotheses do not describe the subjects well as a group together.
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Neither the informative hypothesis, nor its complement can predict the group of subjects
adequately. For the comparison Hi

1 to Hi
2 we find that the gPBF is 1.130, not indicating a

clear preference for either hypothesis. The ER of .759 tells us that most subjects express
support for Hi

1, and the SR of .690 indicates that the gPBF is influenced somewhat by
strong evidence for Hi

2 by some subjects. Indeed, Table 4.2 shows that subjects 5, 11 and 21
express relatively strong evidence for Hi

1 (a factor of 16.67 or higher). The results indicate
that the hypotheses considered are not likely to hold for all subjects. Moreover, it seems
possible that while Hi

1 might be a better description than Hi
2 for some subjects, it does

clearly not apply to all individuals.

In the group-level analysis an average preference for H1 over both H1c and H2 was
found (Ham, 2019). These analyses cannot be compared thoughtlessly. After all, in
the group-level model, individual effects are shrunk to the average effect and dependent on
another. However, we do get some insight that on average H1 seems to be a good model,
while it appears from the individual analysis to not hold for all individuals. Future research
could develop new theories that might indeed describe all individuals, or try to explain
the separation in effects found in the individual analysis. Perhaps an unmeasured variable
explains why for some individuals Hi

1 is preferred over Hi
2 and for others not.

4.6 Conclusion and limitations

This chapter has demonstrated how one can evaluate whether a hypothesis is supported for
all individuals. To answer such question, the geometric Bayes factor was introduced, which
synthesizes the evidence from multiple individuals. The goal of this chapter is twofold.
First, it invites researchers to rethink their own research questions and hypotheses. What is
the goal of an experiment? Is it to show average effects, or demonstrate the iniquitousness
of a theory? If an effect, theory or model holds on average in a population, this is no
proof of the existence of such an effect in any individual specifically. Second, if indeed a
researcher is interested to investigate whether a hypothesis is supported by everyone, this
chapter presents the steps required to analyse this question and how to draw conclusions.
The methodology is easy to use and apply to users already familiar with Bayesian (order
constrained) hypothesis testing.

The data required for the proposed methodology can also be analysed with multilevel
models. Multiple measurements are required for each person in each condition to be
able to draw inference about individual effects. In a multilevel model this data can be
modeled for example by including random effects that account for the dependency between
individual subjects, in order to generalize to a population effect. By enforcing that individual
effects are normally distributed around the average effect, a phenomenon called shrinking
occurs: the individual effects are being pulled towards the mean, see (Chapter 5, Van Erp,
2020). A multilevel model can be used to test the variance of individual effects, but not to
evaluate whether a hypothesis applies to each individual separately. The methodology in
this chapter answers a different question, namely whether the evidence at the individual
level is homogeneous over a sample of individuals.

It is important to keep in mind that the consistency of a Bayes factor depends on sample
size. For the methodology presented in this chapter, that implies that the number of subjects
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and measures per condition are both important. The number of subjects affects the stability
of the ER and SR (Klaassen et al., 2017), while the number of replications affects the
consistency of the individual Bayes factors. Another important consideration is the number
of hypotheses to consider in a comparison. The more hypotheses are considered in a set,
the more difficult it is to find one clear best hypothesis.
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Table 4.2
Individual Bayes factors

Person BF1c BF12

1 0.16 7.25
2 0.96 1.74
3 2.77 1.77
4 0.17 6.97
5 0.00 0.00
6 3.25 2.83
7 1.52 2.64
8 8.10 1.57
9 5.48 0.96

10 0.70 9.55
11 0.03 0.01
12 3.66 1.79
13 0.05 8.24
14 0.27 1.02
15 3.71 2.98
16 3.02 3.40
17 0.09 0.20
18 5.39 3.33
19 0.34 4.35
20 1.08 3.36
21 0.08 0.06
22 2.37 1.04
23 1.30 2.43
24 2.50 0.27
25 0.37 6.16
26 2.30 1.87
27 0.80 0.50
28 2.18 2.22
29 1.49 3.12

Table 4.3
Aggregated Bayes factors

BF1c BF12

Geometric Product 0.649 1.130
Evidence Rate 0.448 0.759
Stability Rate 0.345 0.690
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Chapter 5

Staying in the loop: Prior odds,
Bayes factor, posterior odds

by F. Klaassen1

5.1 Introduction

Updating knowledge is a key part of scientific research. One of the first concepts discussed
in any introductory methodology and statistics course is the scientific cycle (e.g. Neuman,
2011, pp. 14–18), that discusses the updating of theories. Theory and observations form
the basis for new research questions and hypotheses. By collecting and analyzing data,
researchers try to answer these questions. From this new state of knowledge theories can
be further verified, fine-tuned or used to inform policy. Continuously going through this
cycle ensures that you are ‘staying in the loop’. Updating is at the foundation of Bayesian
statistics, visible in Bayes’ theorem:

P(A|D) =
P(A) × P(D|A)

P(D)
∝ P(A) × P(D|A) (5.1)

that demonstrates how we can update our prior knowledge P(A) about property A with data
D into posterior knowledge P(A|D) about A, conditional on D. Equation 5.1 is used to
updated knowledge about parameters or hypotheses (substitute θ or H for A, respectively).
Figure 5.1 illustrates updating at the level of theories, hypothesis probabilities and parameter
distributions.

Parallel in the cycles is some state of prior knowledge that is updated with data, evidence or
an answer, into posterior knowledge. The actual updating step links the cycles together.

1Manuscript under review at Journal of Mathematical Psychology.
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Figure 5.1. Three updating cycles. The top cycle depicts how data is used to update a prior
into a posterior distribution of parameters. The middle cycle depicts how evidence obtained
using the top cycle is used to update prior probabilities into posterior probabilities of
hypotheses. Finally, the bottom cycle depicts how a research question can be answered and
acted upon using the posterior probabilities from the middle cycle.

82



5.1.1 Topic

The bottom loop of Figure 5.1 illustrates updating at the level of theories. Specifically, it
shows that by answering a research question new questions are generated. To illustrate this
updating cycle, let us consider dr. Jones, a researcher who investigates the prevention of
headaches. Currently, she is interested in the question whether a new drug is an effective
headache cure. After her first research indicates that the new drug is likely effective against
headaches, dr. Jones develops new research questions about the size of the effect and the
side effects of the new drug. Before being able to update her research question and theories,
she needs to answer her initial research question.

5.1.2 Hypotheses

The middle loop of Figure 5.1 shows that an answer can be obtained by updating knowledge
about a set of hypotheses. Dr. Jones expects that a new drug performs better than
paracetamol, which in turn outperforms the placebo. Alternatively she also considers the
possibility that paracetamol outperforms both the placebo and the new drug. She translates
these expectations into two hypotheses: H1 : effect new drug > effect paracetamol >
effect placebo and H2 : effect paracetamol > {effect new drug, effect placebo}. Note that
dr. Jones’ expectations describe orderings (> and < denote larger than and smaller than,
respectively) between group means rather than equalities like in a null hypothesis. The
remainder of this paper is illustrated with such inequality constrained – informative –
hypotheses (Hoijtink, 2012; Klugkist et al., 2005). Updating knowledge at the level of
hypotheses can be illustrated by means of Bayes’ theorem (Equation 5.1):

P(Ha)
P(Hb)

×
P(D|Ha)
P(D|Hb)

=
P(Ha|D)
P(Hb|D)

, (5.2)

where P(Ha) is the prior probability of Ha, a, b = 1, 2, ..., I, a , b and I is the number of
considered hypotheses, P(D|Ha) is the marginal likelihood of data D under Ha and P(Ha|D)
is the posterior probability of Ha. The ratios of prior and posterior probabilities are also
called the prior and posterior odds, respectively. The ratio of two marginal likelihoods
is commonly called a Bayes factor (Kass & Raftery, 1995), such that BFab quantifies the
relative evidence for Ha and Hb. Equation 5.2 can also be written as:

PrOab × BFab = PoOab, (5.3)

that is, the prior odds PrOab are updated with BFab – the relative belief in the two hypotheses
after observing data D – into the posterior odds PoOab.

This evidence describes the rate with which the relative belief in two hypotheses changes.
Dr. Jones needs to quantify her knowledge about the two hypotheses into prior probabilities
to obtain the posterior odds that answer her research question. The goal of this paper is to
provide a definition of what these prior probabilities are and present a procedure of how to
obtain them. For now let us assume dr. Jones knows what prior probabilities to consider for
her hypotheses.
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5.1.3 Parameters

The top loop of Figure 5.1 shows that the evidence can be obtained by updating knowledge
about a set of parameters. Dr. Jones considers parameters θparacetamol, θplacebo and θnew drug
in her hypotheses, where θ denotes the mean reduction in headache complaints in the
respective groups, such that her hypotheses now are:

H1 : θnew drug > θparacetamol > θplacebo (5.4)

and

H2 : θparacetamol > {θnew drug, θplacebo} (5.5)

Bayes’ theorem can again be used to show that a marginal likelihood P(D|H) can be
computed with:

P(D|H) =
P(θ|H) × P(D|θ,H)

P(θ|D,H)
(5.6)

where P(θ|H) is the prior distribution for a set of parameters θ that quantifies the knowledge
about θ before collecting any data, P(θ|D,H) is the posterior distribution of these parameters
and P(D|θ,H) is the density of the data. Equation 5.2 showed how a ratio of marginal
likelihoods is required to update prior odds in to posterior odds. Equation 5.6 shows that
each of these marginal likelihoods depend on the prior and posterior distribution on the
parameters. This demonstrated how updating the prior distributions of parameters into
posteriors is required for the updating of the prior odds into posterior odds, which in turn
are required to answer a research question.

Before she can update her knowledge dr. Jones needs to 1) formulate her initial theories
and hypotheses, 2) specify prior probabilities and 3) define prior distributions for each
hypothesis. Dr. Jones can rely on APA guidelines to help her in formulating theories
and hypotheses. It is common practice to justify a research question with a literature
review (e.g. VandenBos, 2010, pp. 27–28). Additionally dr. Jones’ hypotheses depend on,
amongst others, her background, experience, colleagues. Another researcher working in a
different country, collaborating with other researchers or with more experience in the field,
might develop different hypotheses. To define the prior distributions for the parameters, dr.
Jones can rely on extensive literature, ranging from methodological (e.g. Gelman, Jakulin,
Pittau, & Su, 2008; Mulder, 2014) to tutorials (e.g. Garthwaite, Kadane, & O’Hagan, 2005;
O’Hagan et al., 2006) and reviews (e.g. O’Hagan & Perichhi, 2012).

However, guidelines for the specification of prior probabilities are scarce. While
articles about updating Bayes factors discuss the importance of prior probabilities,
recommendations for how to specify them lack (Mulder, 2014; Villa & Walker, 2015).
Mostly no prior probabilities are considered (e.g. Hout et al., 2014; Maanen, Forstmann,
Keuken, Wagenmakers, & Heathcote, 2016) or equal prior probabilities are considered
under the assumption that all hypotheses are equally likely a priori (e.g. Kopp et al., 2016;
Rac-Lubashevsky & Kessler, 2016). Mostly, Bayes factors are reported and interpreted as
the increase in prior odds, without reporting the corresponding prior probabilities. These
prior probabilities are required to complete the updating cycle at the hypotheses level, but
also to update the complete set of nested updating cycles to answer the general research
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question (Figure 5.1).

This paper presents a definition of prior probabilities and an elicitation procedure to specify
and justify prior probabilities. The first part of this paper discusses the middle loop of Figure
5.1 in more detail. The Bayes factor is further introduced, and a definition is developed of
what a prior probability is. Three meaningful components are distinguished: possibility (the
probability of a hypothesis occurring, disregarding context), plausibility (the probability
of a hypothesis occurring incorporating context based prior knowledge) and value (all
factors that affect whether a hypothesis is considered by a researcher). Existing approaches
on the specification of prior probabilities are evaluated and compared using these three
concepts. The second part of this paper discusses an elicitation procedure executed with ten
applied researchers. The results of this procedure demonstrate that applied researchers can
define sensible prior probabilities using possibility, plausibility and value and how prior
probabilities differ over persons, contexts and hypotheses.

5.2 What is a prior probability?

The goal of Bayesian hypothesis testing is to find the best hypothesis from a set of
hypotheses. Consider the j = 1, ..., J infinitely many potential hypotheses, of which
only a subset i = 1, ..., I is considered in a research project. Let us define that a prior
probability P(Hi) > 0 quantifies that Hi is considered and that

∑I
i=1 P(Hi) = 1. To develop

an idea of what a prior probability represents, let us consider the reasons for considering a
hypothesis.

5.2.1 Possibility

A hypothesis should be possible. A hypothesis is possible (i.e., it is not impossible) if it has a
probability of occurring larger than 0, disregarding the context of the hypothesis. Possibility
quantifies the proportion of the parameter space a hypothesis encompasses and can take
on values between 0 and 1. This definition of possibility resembles that of the complexity
in the computation of Bayes factors for inequality constrained hypotheses (Klugkist et
al., 2005). This is further illustrated in the next section. An example of an impossible
hypothesis is Himpossible : θ1 > θ2 > θ3 > θ1. This hypothesis requires θ1 to be larger and
smaller than θ2 and θ3, which cannot be realized. In contrast, the unconstrained hypothesis
Hu : θ1, θ2, θ3 is always true an has a probability of 1. Dr. Jones’ inequality constrained
hypotheses cover only a part of the parameter space.

5.2.2 Intermezzo: the Bayes factor for inequality constrained
hypotheses

Klugkist et al. (2005) show that the Bayes factor for inequality constrained hypotheses
can be computed without evaluating the marginal likelihoods. This approach makes use
of the fact that both H1 and H2 are nested under the same unconstrained hypothesis
Hu : θnew drug, θparacetamol, θplacebo that does not constrain the parameters in any way. If the
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prior parameter distributions for the parameters in Hu are considered independent and
the constrained parameters get the same diffuse prior, BF12 can be computed using the
following equation (Klugkist et al., 2005):

BFab =
fa/ca

fb/cb
(5.7)

where fa is the fit of the data to Ha, that is, the proportion of the unconstrained posterior
distribution in agreement with the constrained hypothesis Ha and ca is the complexity of
Ha, that is, the proportion of the unconstrained posterior distribution in agreement with the
constrained hypothesis Ha. If the parameters in the unconstrained prior are independent
(not correlated), each of the 3! = 6 orderings of the three means is equally likely. Since
H1 is in agreement with one of these orderings, the complexity of H1 is 1

6 . Two orderings
agree with H2, rendering c2 = 1

3 . After collecting data, dr. Jones can determine the fit
of her hypotheses and compute the Bayes factor, that can be used to obtain the posterior
probabilities and answer her question.

5.2.3 Plausibility

A hypothesis should be plausible. Plausibility refers to the probability that a hypothesis
occurs based on context dependent prior knowledge about the parameters. For inequality
constrained hypotheses, the concept of plausibility can also be thought of as prior fit, that is,
how well does the hypothesis fit the prior knowledge. This prior knowledge can be informed
by previous experience of the effects or conditions studied or theoretical extrapolation. An
example of an implausible hypothesis is Himplausible : θplacebo > θnew drug > θparacetamol. This
hypothesis is possible, but current knowledge about placebos and paracetamol tells us that
this hypothesis is fairly implausible.

Dr. Jones considers her knowledge about H1 : θnew drug > θparacetamol > θplacebo and H2 :
θparacetamol > {θnew drug, θplacebo}. She concludes that little is known about the effectiveness
of the new drug, but previous research shows that paracetamol certainly outperforms
placebos. Based on this knowledge she assigns H1 a plausibility of 1/3. The process of
how knowledge is translated into a plausibility will be the topic of discussion in Section
5.4. While assigning a plausibility to H2, dr. Jones is unsure of the relative effectiveness
of paracetamol and new drug, which combined with the knowledge of paracetamol and
placebo results in a plausibility of .75.

5.2.4 Value

A hypothesis should be valued. Both possibility and plausibility contribute to how much
a hypothesis is valued by a researcher. Possibility and plausibility can vary between
hypotheses. A possible hypothesis can be very implausible and vice versa. For example, it
is possible that the placebo will outperform both the new drug and paracetamol in preventing
headaches, but it is not plausible. Alternatively, consider comparing paracetamol to not
only the new drug and a placebo, but also to eating an apple, candy, a kiss on the forehead,
an ice-bath and drinking a beer. It is very plausible that paracetamol outperforms all of
the seven alternative ‘treatments’. Each of the comparisons separately has a possibility
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of .5, but combining all comparisons results in a possibility of only .57 = .008, less
than 1% of the total parameter space. While this hypothesis has high plausibility, it
has low possibility. The combination of possibility and plausibility in part explains why
hypotheses are considered. If a hypothesis is neither possible nor plausible, it is unlikely to
be considered. If a hypothesis is both possible and plausible, it might not be considered
because it is considered redundant. After all, if a hypothesis has a high possibility, it is
not very specific and not much can be learned from this hypothesis. If additionally, the
plausibility of this hypothesis already is high, it might not be worth time and resources to
learn more about this hypothesis. The hypothesis that paracetamol outperforms eating an
apple or candy has low possibility and high plausibility, but is not necessarily valuable to a
researcher.

Possibility and plausibility alone cannot fully explain why some hypotheses are considered,
while others are excluded. Consider a researcher who wants to prove or disprove an
established theory, for example: the world is flat versus the world is round. While there are
many alternative hypotheses that are more possible and plausible than ‘the world is flat’,
they do not reflect the researcher’s aim and thus are not considered. The considerations for
investing time and resources and thus to include a hypothesis cannot be attributed only to the
possibility and plausibility of a hypothesis. Dr. Jones considers H1 and H2 because they are
possible and plausible, and because she is particularly interested in the effectiveness of the
new drug relative to paracetamol. For example, Hnot valued : {θparacetamol, θnew drug} > θplacebo
is both possible and plausible but dr. Jones does not consider this hypothesis because it
makes no prediction on the relative effectiveness of paracetamol and the new drug.

5.3 Prior probability specification

A prior probability quantifies how much a hypothesis is valued while taking into account
its possibility and plausibility. Guidelines and recommendations for specifying prior
probabilities are sparse in the literature, and at best vague (Villa & Walker, 2015). The
paragraphs below discuss how different approaches to prior probability specification include
possibility, plausibility or value in their definition and how feasible the approach is.

5.3.1 No prior probabilities

A common practice in Bayesian hypothesis testing is to not specify any prior probabilities
and focus on the Bayes factor (e.g. Wetzels, Grasman, & Wagenmakers, 2012; Hout et al.,
2014). The Bayes factor can be interpreted as the strength of evidence, or as the rate with
which the prior beliefs need to be adjusted (Mulder & Wagenmakers, 2016). Guidelines
have been proposed to classify the strength of evidence in verbal categories (e.g. Kass &
Raftery, 1995; Wagenmakers et al., 2011) that take focus away from the prior odds.

After Dr. Jones completes her research, she computes a Bayes factor and finds that H1
is 4 times more supported by the data than H2. She concludes that H1 is preferred with
substantial evidence (Wagenmakers et al., 2011). She does not report any prior or posterior
probabilities.
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If no prior probabilities are considered, the conclusion is only affected by the data and not
by prior knowledge. This approach does not incorporate possibility, plausibility or value,
because prior probabilities are not considered.

5.3.2 Equal prior probabilities

An easy way to obtain posterior probabilities is to assign equal prior probabilities to all
hypotheses (e.g. Jarosz & Wiley, 2017). A simple calculation transforms any set of Bayes
factors into posterior probabilities.

Dr. Jones transforms the Bayes factor using equal prior probabilities (P(H1) = P(H2) = .5.
If the Bayes factor is 4, the posterior probabilities of H1 and H2 are .8 and .2 respectively.
This tells her nothing more than what she knew already: that H1 is 4 times more supported
by the data than H2.

Using equal prior probabilities is equivalent to interpreting only the Bayes factors (Kruschke
& Liddell, 2018). Neither of these methods uses any prior information. Mulder (2014)
advises to use equal prior probabilities only when absolutely no prior knowledge is available.
When a researcher considers equal prior probabilities without further explanation it is
unclear whether this reflects the prior knowledge or is just a default choice. Furthermore,
it is very unlikely that all considered hypotheses are exactly equally probable a priori.
Using equal prior probabilities is often used as a quick and default way to obtain posterior
probabilities.

5.3.3 Complexity as prior probability

Jeffreys (1998, Section 1.6) elaborates the idea that simpler hypotheses should always have
a larger prior probability than hypotheses that are more complex. The concept complexity
was introduced in the context of inequality constrained hypotheses in the section What
is a prior probability? It is a measure of how constrained a hypothesis is, relative to the
unconstrained hypothesis. Using complexity as a prior probability implies that equally
constrained hypotheses receive the same prior probability (Scott & Berger, 2010).

Dr. Jones considers complexity as the prior probability. She determines that P(H1) = 1/6
and P(H2) = 1/3 based on the proportion of the parameter space they cover.

Equation 5.7 showed that a Bayes factor for inequality constrained hypotheses can be
written as a ratio of the fit of a hypothesis divided by its complexity. If the relative prior
complexities are used as the prior odds and multiplied with the Bayes factor, which also
contains the complexities, these cancel out and the resulting posterior odds are the relative
posterior fits of the data to the model:

ca

cb
×

fa/ca

fb/cb
=

fa
fb

(5.8)

Consequently, when comparing nested hypotheses the encompassing hypothesis will always
obtain a posterior probability higher than or equal to the encompassed hypothesis. It seems
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undesirable to disregard the relative specificity of a hypothesis in quantifying their relative
posterior probabilities.

5.3.4 Prevalence as prior probability

Ioannidis (2005) and Wilson & Wixted (2018) suggest to use the relative prevalence rate
of true hypotheses in a particular field as prior odds. Although counting the number of
rejected hypotheses in a field seems like a straightforward procedure to gain knowledge
about the objective plausibility of a hypothesis, three potential problems might arise. The
first problem is defining the field to derive the odds from. Dr. Jones could consider
all research on paracetamol, or all research on headache prevention, or all research on
new versus established medication, or many other definitions of the ‘field’. The second
problem is that the available literature might not be a good representation of all conducted
research. Publication bias creates an over-representation of significant findings in the
literature (e.g. Rosenthal, 1979; Ioannidis, 2005). It is difficult to know by what factor the
observed prevalence is overestimated. Finally, it is unclear how to observe the prevalence
of informative hypotheses that might include combinations of (in)equality constraints and
have not been considered previously.

Dr. Jones investigates the literature and finds that over 1, 000 articles consider hypotheses
similar to H2 but only in about 5% = 50 of these papers is this hypothesis compared to a
hypothesis like H1. Only two of these studies have H1 as the preferred hypothesis, and 17
prefer H2.The remaining 31 papers prefer another considered hypothesis or are indecisive.
Dr. Jones does not know how to translate this information into prior probabilities for her
hypotheses.

5.3.5 Subjective prior probabilities

Morey et al. (2016) and Rouder, Morey, & Wagenmakers (2016) argue in favor of defining
subjective prior probabilities, that is, prior probabilities that reflect the prior beliefs of a
researcher. Tijmstra (2018) also pleas for using plausibility as a reasonable prior probability.
Choosing a prior probability based on the subjective beliefs of a researcher aligns with the
definition of a prior probability provided in this paper. However, no methods are available
for applied researchers to translate their knowledge in to a meaningful prior probability.

Dr. Jones thinks about her prior beliefs of H1 and H2, and finds it difficult to quantify her
beliefs about these hypotheses.

5.3.6 Betting odds as prior odds

Hofstee (1984) has proposed a betting framework to think about the probabilities of
hypotheses. Researchers should justify the hypotheses they choose to consider by placing a
bet on the possible outcomes.

Dr. Jones considers her hypotheses and decides to bet with a rate of 6 : 2 on the hypotheses.
From this quantification we determine that her prior probability of H1 is three times larger
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than that of H2. When she wants to report these prior odds, she has trouble explaining what
made her choose these specific odds. If hypotheses are valued differently, the betting odds
chosen for these hypotheses will differ. However, it is not formally described how these
betting odds could be derived or defended. Similar to the consideration of subjective prior
probabilities, it is unclear how a bet should be placed and how a researcher could justify
the bets.

5.3.7 What is a prior probability?

The presented approaches for specifying a prior probability all seem to incorporate one or
more of the reasons to consider a hypothesis (possibility, plausibility, value). If an approach
used plausibility or value it is unclear how to actually quantify this. The possibility,
plausibility and value together describe the prior belief in a hypothesis. The next section
presents an elicitation procedure developed to elicit the possibility and plausibility for
hypotheses and use this quantified knowledge to express how they value their hypotheses
by betting on them.

5.4 Prior probability elicitation

A procedure was developed to elicit the prior probabilities of hypotheses. Thirteen
behavioral scientists were approached to participate in an experiment in which the procedure
was executed. The researchers were non-randomly selected, utilizing the network of the
author within Utrecht University. A requirement for selection was familiarity with Bayesian
hypothesis testing and informative (inequality constrained) hypotheses. Familiarity with
Bayesian factors limits necessary explanations on Bayesian statistics, updating or prior
odds. Familiarity with informative hypotheses ensures that researchers have encountered
hypotheses of varying complexity before. Of the thirteen approached researchers, ten were
available within the set time frame of two months (April and May 2018).

The elicitation procedure consisted of explanation and questions divided in two main
parts: a Training Phase, where participants learn new concepts and procedures and a Test
Phase, where the learned procedure is applied to new contexts. The whole procedure
lasted approximately one hour for each participant. Informed consent about the task was
obtained prior at the start of the meeting. Participants could at any point ask for clarification
or guidance, and were informed that not their knowledge, but the procedure was under
evaluation. Any questions or comments were answered during the elicitation by the author.

The elicitation procedure serves three goals. The first goal is to evaluate whether possibility,
plausibility and value can be elicited and distinguished. This is achieved by introducing
a stepwise elicitation procedure. This stepwise method is introduced to the participants
after familiarizing participants with assigning probabilities to hypotheses and refreshing
or extending their knowledge on Bayesian updating. The second goal of the experiment
is to demonstrate that researchers are able to use the learned procedure and concepts to
elicit prior probabilities for hypotheses that do not concern their own research and to
their own hypotheses. The third and final goal of the experiment is to evaluate whether
the procedure is a valid method to elicit prior probabilities. Throughout the elicitation
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Table 5.1
Hypotheses considered at three steps in the elicitation procedure.

No context Headache Flanker
H1 a > b ; c paracetamol > placebo uniform > contrast
H2 a > c ; b paracetamol > apple control > uniform
H3 a > b > c paracetamol > placebo > apple uniform > control > contrast
H4 c > b > a apple > placebo > paracetamol control > uniform > contrast

Note. The column No context shows the hypotheses presented to participants before context was
available. The column Headache shows the hypotheses in the Headache example and the column
Flanker shows the hypotheses in the flanker example.

procedure evaluation questions are asked. The results of these goals are presented in the
next three sections.

5.5 Eliciting and distinguishing possibility, plausibility
and value

The previous section introduced three concepts that each describe part of a prior probability:
possibility, plausibility and value. The first goal of the elicitation procedure is to demonstrate
that each of these concepts can be elicited. The sections below present those parts of the
procedure that demonstrate the elicitation possibility, plausibility and value. The full
procedure is available on https://github.com/fayetteklaassen/prior-probabilities.

5.5.1 Possibility

The possibility of a hypothesis, as discussed before, relates to the proportion of the parameter
space covered by the hypothesis. To elicit this, participants are introduced to four hypotheses
about parameters a, b and c. They are informed these letters represent three group means,
without any further context. The hypotheses describe expected orderings between two or
three of these means (see the first column of Table 5.1).

Researchers are instructed to consider each hypothesis separately and specify a probability
between 0 and 1 that describes how likely it is that the hypothesis is true versus that it is
not true. The possibility of a hypothesis could be derived without elicitation, but this step is
explicitly introduced to facilitate the elicitation of plausibility in the next step. Participants
are taught to think of possibility in terms of the number of possible orderings between
parameters. Both H1 and H2 constrain only two parameters, while H3 and H4 constrain all
three parameters. The assigned probabilities to the hypotheses are displayed in the first
column in Figure 5.2 labeled possibility2. The hypotheses were chosen such that H1 and
H2 should be equally possible and more possible than H3 and H4. The results show that
these 10 researchers managed to quantify the possibility of four inequality constrained
hypotheses without any context about these hypotheses.

2Note that the presented probabilities are rescaled so that their sum adds up to 1.
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5.5.2 Plausibility

Plausibility of a hypothesis relates to the knowledge about the parameters. To elicit this,
context is added to the example, such that participants can activate their knowledge. The
same four hypotheses are considered, but now in the fictional context of a researcher who is
interested in preventing headaches (middle column of Table 5.1). This randomly assigns
patients to one of three treatments: a paracetamol (a), a placebo (b) or an apple (c) and
measures their headache level the next day. The researchers are asked to consider the
hypotheses once more and assign to each hypothesis a probability that it is true versus
that it is not true, incorporating their knowledge about the headache prevention ability of
paracetamol, placebo and apples. These probabilities are presented in the second column of
Figure 5.2 labeled plausibility. The plausibility assigned to the hypotheses differs from the
possibility of the hypotheses. Specifically, H3 generally is considered more plausible than
possible. This is reasonable because H3 almost perfectly describes the common perceptions
of the effectiveness of paracetamol, placebos and apples. Additionally, H3 is never assigned
a higher plausibility than H1. This is a consequence of the fact that H3 is nested in H1,
that is, H1 has a higher possibility. Figure 5.2 shows that the plausibility assigned by
researchers aligns with what can be expected based on common knowledge. It shows that
for a research example where knowledge is considered fairly similar between people, the
elicited plausibility indeed is rather stable over participants. Additionally, there is a clear
differentiation between the assigned possibility and plausibility, where some hypotheses
are assigned higher plausibility than possibility after learning the context, and for other
hypotheses the reverse is observed.

5.5.3 Value

For the elicitation of possibility and plausibility researchers were asked to consider each
hypothesis in itself. To evaluate whether value plays a role besides possibility and
plausibility, the hypotheses are considered as a set. Three tasks in the experiment ask
researchers to divide 1 euro over all hypotheses as bets, to literally measure how the
hypotheses are valued. In the first task, participants are instructed to consider only the
possibility they assigned to the four hypotheses before any context is added (that is, the
hypotheses in the first column of Table 5.1), and consider the possibility in placing their
bets. The results are presented in the column Bet in Figure 5.2. The placed bets are in line
with what can be expected. Because H1 and H2 have the highest possibility, the expected
pay-out for these hypotheses is highest, and there is no differentiation between the two
hypotheses. Some participants choose to bet on the hypotheses with lower possibility too,
but with lower bets. Finally, participant 6 bet on H3 but not on H4. This researcher might
value H3 and H4 differently for how they relate to the other two hypotheses considered.
This first task demonstrates that researchers already differ in how they translate the value
of possibility into a bet. With nothing but the possibility to rely on H1 and H2 seem the
most profitable to bet on. However, some people choose to bet on H3 and H4 as well.
These hypotheses might be valued because they provide the potential knowledge gained by
investigating these hypotheses.

In the second task, participants again consider the hypotheses without any context, and
incorporate the knowledge gain of each hypothesis in addition to the possibility. The
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knowledge gain is determined by taking the inverse of the possibility, and is presented in
the form of a betting odds. That is, a hypothesis with a possibility of .5 is assigned a betting
odds of 1/.5 = 2. The betting odds tell how many times a bet is paid out if that hypothesis
is in fact the best hypothesis and are a quantification of how much knowledge is gained by
learning about this hypothesis. Participants are asked to consider these betting odds and
the possibility they assigned to the hypotheses in placing their bets. If only the possibility
of a hypothesis (transformed into the betting odds) affects how researchers bet on a set
of hypotheses, the relative bets for the four hypotheses would be all equal. Consider .5
and .25 as the possibilities of two hypotheses. Their respective betting odds would be 2
and 4. The expected pay-out for each hypothesis is .5 × 2 = 1 and .25 × 4 = 1, which
corresponds to an expected equal bet on the two hypotheses. The fourth column of Figure
5.2 shows the bets placed on the four hypotheses. While participants 1, 4, 5 and 7 indeed
distribute their bets equally, the bets of participants 2, 6 and 10 resemble their assigned
possibilities. In other words, these participants only considered the possibility in placing
their bets. Participants 3 and 8 seemed to consider only the betting odds in placing their
bets, betting more on the hypotheses that pay out more (provide more knowledge). Finally,
participant 9 considered even a different approach, betting most on H2 and H4. While there
is no numerical reason to make this particular bet, it appears this participant considers
something more than the possibility and the knowledge gain of the hypotheses. The reason
might be that the comparison of H2 and H4 seems the most interesting to this researcher.
This second task demonstrates that researchers show different betting behavior that cannot
uniquely be attributed to possibility or the gain in knowledge.

Plausibility too can play a role determining the prior probabilities of hypotheses. The third
task asks researchers again to place a bet on the hypotheses, taking into account the betting
odds, plausibility and how they value the hypotheses. Similar to the previous task, the
expected pay-off can be computed, by multiplying the betting odds (the pay-out) with the
plausibility (the subjective probability that the hypothesis is true). The expected value
is presented in the fifth column of Figure 5.2 labeled Predicted bet. The sixth column,
labeled Bet 3 presents the actual placed bets. For participants 2, 5, 6, 7 and 8, the relative
ordering of placed bets resembles the prediction. Only the size of the bets deviates from the
prediction. The bet placed on H4 is higher than expected for participants 4 and 9, indicating
that this hypothesis is valued more than expressed by only the possibility and plausibility.
Even though the participants have similar knowledge on the effectiveness of paracetamol,
placebo and an apple in preventing headaches, the final bets are widely different from each
other and from the expectation if only possibility and plausibility are taken into account. It
appears that the hypotheses are valued differently by different researchers.

The Training Phase shows three things. First, it shows that ten researchers were able to
specify the possibility of four hypotheses. Second, after adding a context to the hypotheses
researchers specify the plausibility of hypotheses. The added context affects the variability
of the individual answers, indicating that the plausibility of hypotheses differs from person
to person, albeit slightly. Finally, when asked to placed bets incorporating only possibility
or both possibility and plausibility, the placed bets differ from expected bets, indicating
that individuals value the hypotheses differently. The final bet placed is an elicited prior
probability. In this prior probability, researchers are given the opportunity to include the
possibility, plausibility and their value of the hypotheses.
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Figure 5.2. Assignment of possibility, plausibility and bets to the hypotheses without and
with context for the headache example (see Table 5.1). Each row depicts a participant. The
columns show (1) Possibility; (2) Plausibility; (3) Bet 1, incorporating possibility; (4) Bet
2, incorporating possibility and betting odds; (5) Prediction, the predicted bet based on
betting odds and plausibility; (6) Bet 3, incorporating betting odds and plausibility.
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5.6 Eliciting probabilities

The second goal of the elicitation procedure is to evaluate whether researchers can use
the procedure to assign probabilities in practice. This is achieved by two final tasks in
the experiment. In the first task participants are asked to consider four hypotheses about
a psychological phenomenon, that is not their own research interest. This task mimics
the scenario where researchers are confronted with hypotheses and evidence of another
researcher and have to define their own probabilities to evaluate this evidence. The second
task asks researchers to formulate two or more hypotheses about their own research. They
complete the procedure for this set of hypotheses, resulting in their own prior probabilities.

The hypotheses presented by a hypothetical other researcher concern an adaptation of
the flanker task (Eriksen & Eriksen, 1974). In this fictional reaction time experiment,
participants are asked to identify the middle letter in a sequence of five letters as an X (press
left hand key) or an O (press right hand key) as quickly as possible. Three conditions are
considered: Uniform – the target letter is flanked by copies of the same letter (e.g. XXXXX),
Contrast – the target letter is flanked by copies of the contrasting target letter (e.g. XXOXX)
and Control – the target letter is flanked by copies of a lower case letter that is different from
the target letters (e.g. ssOss). Four hypotheses are formulated about the average reaction
time in the correct trials for each of these conditions. The four hypotheses are presented in
Table 5.1.

Participants are asked to think about the probability of these hypotheses, disregarding
context (possibility), the probability of these hypotheses incorporating their knowledge
(plausibility) and to finally place a bet on these hypotheses. Figure 5.3 shows the results of
this procedure. The first column shows the possibility, which was given and is thus uniform
over the hypotheses. The second column presents the plausibility of the hypotheses for
each participants. The third column shows the predicted bet based on the possibility and
plausibility. Finally, the fourth column shows the actually placed bets. For some participants
the expected value does well in predicting the placed bets. For others, the prediction does
not account for the fact that some hypotheses are not considered, by betting nothing on
them. Neither the expected value nor the possibility or plausibility can explain the betting
of the participants, indicating that the final probability also reflects how researchers value
the hypotheses differently.

Finally, participants are asked to consider a set of hypotheses about their own research.
They quantify the possibility and plausibility of their bets and place their bets accordingly.
Figure 5.4 shows, from left to right, the possibility, plausibility, predicted and placed
bets. Note that each researcher could define their own hypotheses, so the number and
possibility of the hypotheses differ between participants. In the flanker example a bet could
be withheld to express a hypothesis not valued. In the current task, researchers already
excluded all hypotheses they did not value to create their set of interest, and logically all
hypotheses considered receive a bet. Similar to the flanker task, the relative size of the
placed bets differs from the prediction, plausibility and possibility. Even for a self-chosen
set of hypotheses in a researcher’s own field, plausibility and possibility cannot account for
the differences in the placed bets. Additionally, between researchers different types of bets
can be observed. While for participant 1, 5 and 7 the final bets are equal or almost equal for
all hypotheses, participants 2, 4, 8 and 10 show a substantial bet on one hypothesis, while
dividing a smaller amount over the remaining hypotheses. These differences demonstrate
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Figure 5.3. Plausibility and bets assigned to the hypotheses for the flanker example (see
Table 5.1). The columns show from left to right (1) Possibility; (2) Plausibility; (3)
Predicted bet based on possibility and plausibility; and (4) actually placed bet.
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that it seems unrealistic to develop a default rule for prior probabilities, or a rule of thumb.
Clearly, as the context of a research question differs, the set of hypotheses changes, and so
do the relative probabilities.

5.7 Evaluation of the elicitation

The results of the elicitation presented above demonstrate that possibility and plausibility
alone do not account for the prior probabilities of hypotheses. The value of a hypothesis
is also included in the placed bets. To evaluate the elicitation method, several feedback
questions were asked during the elicitation procedure. The procedure is evaluated in
terms of face validity, reliability and feasibility (Johnson, Tomlinson, Hawker, Granton, &
Feldman, 2010). All measures are evaluated by means of self-evaluation on a 5-point scale
where 1 indicates Not at all and 5 indicates Completely. The main results of these questions
are presented below.

Face validity is evaluated for each set of hypotheses (headache; flanker; own hypotheses)
after placing the final bets. Participants were asked to rate how well the bets they
placed reflect their knowledge for the probabilities of the hypotheses. By asking this
question, researchers are invited to reflect on the input they provided so far. It appears that
researchers feel mostly that the bets they specified are a good reflection of their ideas, for
the probabilities of their own hypotheses (min = 4, max = 5, mean = 4.65). The average
feeling of how good ideas were reflected in the bets was also good for the headache example
(min = 2, max = 5, mean = 4.00) and flanker task (min = 2, max = 5, mean = 4.15). This
shows that the procedure is capable of eliciting values that reflect a researcher’s ideas. It
appears more valid for the elicitation of probabilities for own hypotheses than for a mock
example or research outside one’s field. In other words, the procedure has the highest face
validity when determining the prior probabilities for one’s own research.

Reliability too is measured after every placed bet, by asking participants to rate the following
statement on the same five point Likert scale: If I were to complete this procedure again, I
would obtain similar probabilities. For hypotheses they specified themselves, researchers
were on average quite certain about their bets (mean = 4.6, min = 4, max = 5). For
hypotheses about the flanker task, participants were less certain about their own reliability
(mean = 4.25, min = 4, max = 5). The self-reported reliability is high for both the prior
probability of own hypotheses and for the flanker example. Even though it is self-reported,
these results indicate the method is considered to provide reliable prior probabilities.

Finally, feasibility was measured at three moments in the experiment. First, at the end of
the Training Phase, participants are asked whether the steps were easy to execute (mean =

4.2, min = 2, max =5) and whether they feel capable to apply the used procedure (mean = 4,
min = 3, max = 5). These results show that the method was easy to follow and execute, with
the provided guidance. After assigning probabilities to the flanker hypotheses, participants
are asked to reflect how capable they feel in assigning probabilities to hypotheses outside
of their own field (mean = 3.3, min = 2, max = 5). Finally, after assigning probabilities
to their own hypotheses participants are asked to reflect how capable they feel to assign
probabilities to their own hypotheses (mean = 4.05, min =4, max = 5). Similar to the face
validity, participants feel more capable to assign probabilities to their own hypotheses than
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Figure 5.4. Plausibility and bets assigned to a set of hypotheses defined by each participant.
The number of hypotheses varies over participants. The columns show from left to right (1)
Possibility; (2) Plausibility; (3) Predicted bet based on possibility and plausibility; and (4)
actually placed bet.
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to the flanker hypotheses. The method might be most suitable for defining probabilities to
hypotheses that a researcher has knowledge about.

5.8 Discussion and conclusion

This article has three goals. First, by discussing the role of prior probabilities within the
updating cycle, the importance and necessity of specifying prior probabilities is illustrated.
Posterior probabilities can only be obtained when prior probabilities are specified and
updated with evidence. Dr. Jones has completed the prior probability elicitation procedure,
resulting in prior probabilities of .3 and .7 for H1 : θnew drug > θparacetamol > θplacebo and
H2 : θparacetamol > {θnew drug, θplacebo}, respectively. She conducts an experiment resulting in
a Bayes factor BF12 = 4 and update her prior odds of .3/.7 = 0.43 into posterior odds of
1.71. The a priori belief of dr. Jones for H2 was almost twice as large as for H1. The data
do not align with this prior belief, and express a preference for H1, resulting in a posterior
probability of .63 for H1 and .37 for H2. Dr. Jones uses the posterior probabilities to answer
her research question and has completed one loop of the research cycle.

However, she is not satisfied with the current state of knowledge on the effectiveness of the
new drug. Based on the results of the first research project she has become interested in
a third hypothesis H3 : {θparacetamol, θnew drug} > θplacebo. Figure 5.1 shows how the answer
to a research question influences the decision to do further research, and develop a new
research question. This initiates a new cycle through the updating loops. In this second
cycle, the posterior odds for H1 relative to H2 can be used as prior odds. Because H3 is
now considered in addition to H1 and H2, the prior odds relative to the newly considered
hypothesis have to be formulated. Also for updating the parameter cycle dr. Jones can use
the posterior distribution from her first project as her new prior distribution for H1 and H2.
For H3, a new prior distribution has to be defined, that can be used to compute the marginal
likelihood and corresponding Bayes factors. If dr. Jones had decided to not define any
prior probabilities in her first research project, she would not have been able to update this
knowledge in a second research cycle, because she would fail to account for the knowledge
already available from the earlier research.

The second goal of this article is to define what a prior probability is. Assigning a prior
probability to a hypothesis means to consider it, and thus to exclude the hypotheses that
do not get a prior probability assigned. Prior probabilities can be used to describe the
relative prior belief for a set of hypotheses. Three reasons determine whether a hypothesis
is considered: its possibility, plausibility and value to the researcher. Existing guidelines for
the specification of prior probabilities all relate to one or more of these aspects. The varying
proposed strategies can be differentiated and summarized with these three components by
means of the elicitation procedure in this paper. Possibility, plausibility and value can each
be distinguished from the results. This seems to justify the definition of prior probabilities
in terms of possibility, plausibility and value.

The third and final goal of this article is to provide a concrete guideline that allows
researchers to define their own prior probabilities. This is useful in updating knowledge
in their own research, where they can then update their prior probabilities and can report
the findings. It can also be beneficial to interpret Bayes factors reported in other research
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based on own specified prior probabilities for the hypotheses considered. This article
presents an elicitation procedure that is directed at specifying prior probabilities following
the distinction in possibility, plausibility and value. The results show that it is possible to
differentiate these three concepts between individuals, and that by manipulating context,
knowledge or value, the corresponding component is affected. Furthermore, individuals
differ in their assigned prior probabilities, and rarely do equal prior probabilities represent
the researchers’ prior knowledge adequately.

The results also show that participants rated the procedure feasible, valid and reliable.
Both the validity and self-reported reliability were on average higher in the context of own
hypotheses rather than predefined hypotheses. This further supports the argument that it
is important to report prior probabilities rather than leave it to the reader to define their
own prior probabilities. A reader can still disagree with these probabilities, but can better
consider how to disagree.

This article has demonstrated how possibility and plausibility play a role in eliciting prior
probabilities, but cannot explain these entirely. How a researcher values a hypothesis
relative to other considered hypotheses appears to play a role in the final prior probability
assigned to it. Through evaluation of the elicitation procedure, it appears that researchers
are able to think about their own prior probabilities and report their rationale behind them,
whether they use the introduced procedure or another method. Specifying prior probabilities
allows researchers to evaluate the evidence in light of their prior beliefs and reflect on the
agreements, disagreements and surprises between prior beliefs and evidence from data.
This creates a more open research cycle, and enables us to be in the loop continuously.
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Chapter 6

Software

Two pieces of software have been developed alongside the research presented in this
dissertation. The R package BayesianPower is published and available on CRAN 1. Section
6.1 presents the vignette available for this package. The R Shiny application OneForAll
has been developed alongside Chapter 3. This application is available online at https:
//utrecht-university.shinyapps.io/OneForAll/, or can be installed locally to enable simulation
features. The manual of the local shiny application is presented in Section 6.2.

6.1 BayesianPower: Sample size and power for comparing
inequality constrained hypotheses

BayesianPower can be used for sample size determination (using bayes_sampsize) and
power calculation (using bayes_power) when Bayes factors are used to compare an
inequality constrained hypothesis Hi to its complement Hc, another inequality constrained
hypothesis H j or the unconstrained hypothesis Hu. Power is defined as a combination
of controlled error probabilities. The unconditional or conditional error probabilities
can be controlled. Four approaches to control these probabilities are available in the
methods of this package. Users are advised to read this vignette and the paper available at
https://doi.org/10.17605/OSF.IO/D9EAJ where the four available approaches are presented
in detail (Klaassen, Hoijtink, & Gu, n.d.).

6.1.1 Power calculation with bayes_power()

bayes_power(n, h1, h2, m1, m2, ngroup = NULL, comp = NULL, bound1
= 1, bound2 = 1/bound1, datasets = 1000, nsamp = 1000, seed =
NULL)

1Klaassen, F. (2019). BayesianPower: Sample size and power for comparing inequality constrained hypotheses.
R packages, version 0.1.6. https://cran.r-project.org/web/packages/BayesianPower/index.html
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Arguments

n A number. The sample size for which the error probabilities must be computed.

h1 A constraint matrix defining H1, see below for more details.

h2 A constraint matrix defining H2, or a character 'u' or 'c' for the unconstrained or
complement hypothesis.

m1 A vector of expected population means under H1 (standardized), see below for more
details.

m2 A vector of expected populations means under H2 (standardized). m2 must be of same
length as m1.

ngroup A number or NULL . The number of groups. If NULL the number of groups is
determined from the length of m1.

comp A vector or NULL . The complexity of H1 and H2. If NULL the complexity is estimated.
See below for more details.

bound1 A number. The boundary above which BF12 favors H1, see below for more details.

bound2 A number. The boundary below which BF12 favors H2.

datasets A number. The number of datasets to simulate to compute the error probabilities

nsamp A number. The number of prior or posterior samples to determine the complexity or
fit.

seed A number. The random seed to be set.

Details

Specifying hypotheses

Hypotheses are defined by means of a constraint matrix, that specifies the ordered constraints
between the means µ using a constraint matrix R, such that Rµ > 0, where R is a matrix
with J columns and K rows, where J is the number of group means and K is the number of
constraints between the means, µ is a vector of J means and 0 is a vector of K zeros. The
constraint matrix R contains a set of linear inequality constraints.

Consider

R <- matrix(c(1,-1,0,0,1,-1), nrow = 2, byrow = TRUE)
mu <- c(.4, .2, 0)

R

## [,1] [,2] [,3]
## [1,] 1 -1 0
## [2,] 0 1 -1

mu
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## [1] 0.4 0.2 0.0

R %*% mu

## [,1]
## [1,] 0.2
## [2,] 0.2

(R %*% mu) > 0

## [,1]
## [1,] TRUE
## [2,] TRUE

The matrix R specifies that the sum of 1 × µ1 and −1 × µ2 and 0 × µ3 is larger than 0, and
the sum of 0 × µ1 and 1 × µ2 and −1 × µ3 is larger than 0. This can also be written as:
µ1 > µ2 > µ3. For more information about the specification of constraint matrices, see for
example (Hoijtink, 2012).

The argument h1 has to be a constraint matrix as specified above. The argument h2 can be
either a constraint matrix, or the character 'u' or 'c' if the goal is to compare H1 with Hu,
the unconstrained hypothesis, or Hc the complement hypothesis.

Specifying population means

Hypothesized population means have to be defined under H1 and H2, also if Hu or Hc are
considered as H2. The population means have to be standardized.

Computing complexity

If the complexity of a hypothesis is known it can be specified under comp to reduce
computational time. If comp = NULL the complexity is sampled using µ· ∼ N(0, 1000) as
a prior distribution for each mean, that is, a normal distribution with mean 0 and standard
deviation 1000.

Setting bounds

bound1 and bound2 describe the boundary used for interpreting a Bayes factor. If bound1
= 1, all BF12 > 1 are considered to express evidence in favor of H1, if bound1 = 3, all
BF12 > 3 are considered to express evidence in favor of H1. Similarly, bound2 is the
boundary below which BF12 is considered to express evidence in favor of H2.

Examples

Example 1. H1 vs Hc

An example where three group means are ordered in H1 : µ1 > µ2 > µ3 which is compared
to its complement. The power is determined for n = 40
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h1 <- matrix(c(1,-1,0,0,1,-1), nrow= 2, byrow= TRUE)
h2 <- 'c'
m1 <- c(.4,.2,0)
m2 <- c(.2,0,.1)
bayes_power(40, m1, m2, h1, h2)

Example 2. H1 vs H2

An example where four group means are ordered in H1 : µ1 > µ2 > µ3 > µ4 and in
H2 : µ3 > µ2 > mu4 > µ1. Only Bayes factors larger than 3 are considered evidence in
favor of H1 and only Bayes factors smaller than 1/3 are considered evidence in favor of H2.

h1 <- matrix(c(1,-1,0,0,0,1,-1,0,0,0,1,-1), nrow= 3, byrow= TRUE)
h2 <- matrix(c(0,-1,1,0,0,1,0,-1,-1,0,0,1), nrow = 3, byrow= TRUE)
m1 <- c(.7,.3,.1,0)
m2 <- c(0,.4,.5,.1)
bayes_power(34, h1, h2, m1, m2, bound1 = 3, bound2 = 1/3)

6.1.2 Sample size determination with bayes_sampsize()

bayes_sampsize(m1, m2, h1, h2, type = 1, cutoff, bound1 = 1,
bound2 = 1 / bound1, datasets = 1000, nsamp = 1000, minss =
2, maxss = 1000, seed = 31)

Arguments

The arguments are the same as for bayes_power() with the addition of:

typeA character. The type of error to be controlled. The options are: "1", "2", "de",
"aoi", "med.1", "med.2". See below for more details.

cutoff A number. The cutoff criterion for type. If type is "1", "2", "de", "aoi",
cutoff must be between 0 and 1. If type is "med.1" or "med.2", cutoff must be larger
than 1. See below for more details.

minss A number. The minimum sample size.

maxss A number. The maximum sample size.

Details

bayes_sampsize() iteratively uses bayes_power() to determine the error probabilities
for a sample size, evaluates whether the chosen error is below the cutoff, and adjusts the
sample size.
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type

Klaassen et al. (n.d.) describes in detail the different types of controlling error probabilities
that can be considered. Specifying "1" or "2" indicates that the Type 1 or Type 2 error
probability has to be controlled, respectively the probability of concluding H2 is the best
hypothesis when H1 is true or concluding that H1 is the best hypothesis when H2 is true.
Note that when H1 or H2 is considered the best hypothesis depends on the values chosen
for bound1 and bound2. Specifying "de" or "aoi" indicates that the Decision error
probability (average of Type 1 and Type 2) or the probability of Indecision has to be
controlled. Finally, specifying " med.1" or "med.2" indicates the minimum desired
median BF12 when H1 is true, or the minimum desired median BF21 when H2 is true.

Examples

Example 1. H1 versus Hc, controlling decision error

h1 <- matrix(c(1, -1, 0,
0, 1, -1),

nrow= 2, byrow= TRUE)
h2 <- 'c'
m1 <- c(.4, .2, 0)
m2 <- c(.2, 0, .1)
bayes_sampsize(h1, h2, m1, m2, type = "de", cutoff = .125)

Example 2. H1 versus H2, controlling indecision error

h1 <- matrix(c(1, -1, 0, 0,
0, 1, -1, 0,
0, 0, 1, -1),

nrow= 3, byrow= TRUE)
h2 <- matrix(c(0, -1, 1, 0,

0, 1, 0, -1,
-1, 0, 0, 1),

nrow = 3, byrow= TRUE)
m1 <- c(.7, .3, .1, 0)
m2 <- c(0, .4, .5, .1)
bayes_sampsize(h1, h2, m1, m2, type = "aoi", cutoff = .2,

minss = 2, maxss = 500)

Example 3. H1 versus Hu, controlling median Bayes factor

h1 <- matrix(c(1, -1, 0, 0,
0, 1, -1, 0,
0, 0, 1, -1),

nrow= 3, byrow= TRUE)
h2 <- 'u'
m1 <- c(.3, .2, 0)
m2 <- c(0, 0, 0)
bayes_sampsize(h1, h2, m1, m2, type = "med.1", cutoff = 3,
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minss = 2, maxss = 500)

6.2 OneForAll: Multiple N = 1 Bayes factors

This manual describes how the Shiny Application ‘OneForAll’ can be used. A stable link to
the app can be found on http://github.com/fayetteklaassen/OneForAll. The application can
be run on any computer with an internet connection. By using the application, you agree to
the Terms of Usage, as displayed on the starting screen of the app. This application allows
you to evaluate informative hypotheses for multiple N = 1 studies of your own data. If you
want to execute a simulation study (like presented in the paper), please contact the author at
mailto for R code or a Shiny application you can run locally on your own computer.

6.2.1 Analyze own data

This section describes each of the steps required to analyze own data in the tab Analyze
own data within the Shiny Application OneForAll. This item consists of three options from
the menu: Settings and load data, Individual Bayes factors, and GPBF output. The first
will be discussed in detail, while the other two can be used to view the results.

Step 1: Data and hypotheses

Step 1 is to select the data file to be used for analysis. You can choose to use the example
data from Zedelius et al. (2011) (as described in Klaassen et al. (2017)). Alternatively,
you can upload your own data file to be analyzed. This file should be a .txt with as many
rows as persons or cases, and per row the entries for each condition, separated by a space
or tab (white space). Each entry in the file should be an integer, describing the number of
successes in each condition. The rows and columns should not be numbered or labeled.
SPSS data can be saved as a Tab delimited .dat file (without row and column names), and
the .dat extension must be manually changed to .txt . When the file is selected, a preview of
the data is visible, together with a description of the number of conditions and the number
of participants. If these numbers are correct, you can continue. If not, the data file was not
in the right format. Common problems are that the first row contains column names (you
can just delete this row), or strange symbols in the first entry, which can also be deleted.
Next, the number of replications used in the experiment should be given.

Step 2: Number of conditions and hypotheses

Step 2 is to define the constraints of the hypotheses considered. Three options are available.
Below examples are provided on how to use this option, using the hypotheses specified in
Table 6.1.

• Option 1: Using >. This option requires that for each hypothesis you want to
consider, you specify each constraint using > and separate constraints with a
comma. Each hypothesis is specified on its own line. The parameters of interest
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Table 6.1
Possible specifications for 6 hypotheses

Hypothesis Using > Using R Default
Hi

1 : πi
1 > π

i
2 > π

i
3 > π

i
4 > π

i
5 > π

i
6 X X X

Hi
2 : πi

1 + πi
2 > π

i
3 + πi

4 > π
i
5 + πi

6 X X X
Hi

3 : πi
1 + πi

2 + πi
3 > π

i
4 + πi

5 + πi
6 x X x

Hi
4 : πi

1 > π
i
2 > π

i
3 > π

i
4 > π

i
6 > π

i
5 X X X

Hi
5 : πi

1 > π
i
3 > π

i
2 > π

i
4 > π

i
6 > π

i
5 X X x

are the success probabilities in the experimental conditions. They can be referred
to by a number that corresponds to the column number of that condition in
the data. Two types of constraints can be specified: a constraint between two
parameters (e.g.1$>$2"), or a constraint between two combinations
of two parameters, separated by a $'+'$ (e.g.1+2$>$3+4“). Note that
one parameter cannot be on both sides of the constraint (e.g. ”1+2 > 2+3" is not
allowed). Figure 6.1 specifies all hypotheses from Table 6.1 that can be specified
using this option.

• Option 2: Using constraint matrix. This options allows the user to specify a constraint
matrix for each hypothesis. For more details on a constraint matrix, see Mulder,
Hoijtink, & Leeuw (2012) for example. The first line should specify how many
hypotheses M are specified, and each hypothesis m = 1, ...,M should start with a line
specifying the number of constraints (rows) in Rm. Each constraint matrix contains
J + 1 columns, where J is the number of conditions. The first J columns specify the
constraint matrix, and the last additional column should contain the contrast vector
r. With this option more complex hypotheses can be specified. Figure 6.2 shows
how Hi

1 and Hi
3 could be specified using R, Option 2. Option 2 is more flexible than

Option 1, but as can be seen in Figures 6.1 and 6.2, Option 1 is more straightforward
to specify, if the hypotheses allow for this option.

• Option 3: Default. This option is only available for an even number of conditions,
and specifies automatically three hypotheses: Hi

1 : πi
1 > π

i
2 > ... > π

i
J , a full ordered

hypothesis, where J ≥ 4, Hi
2 : πi

1 > πi
2 > ... > πi

J > πi
J−1, that only deviates

from Hi
1 because the last two parameters are reversed in the ordering, and finally

Hi
3 : πi

1 + πi
2 > ... > πi

J−1 + πi
J , a full ordered hypothesis of each adjoining pair of

parameters.

When the constraints are submitted, the third step is to specify which Bayes factors
should be computed. The options available are all combinations of the hypotheses
specified, and each hypothesis against its complement and the unconstrained
hypothesis. By pressing the button ‘Check constraints’ the constraints are checked,
and a textbox is returned with the hypothesis as processed by the app. If something
is incorrect here, please re-enter your constraints.
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Figure 6.1. Hypothesis specification option 1: Using >

Step 3: Computation details

The number of iterations required for the computation of the Bayes factor. By default,
this value is 10, 000. Decreasing this value will increase the speed of computation, but
particularly for larger number of conditions (say 8), decrease the precision of the Bayes
factor computation. You can enter and adjust the computation seed, for reproducibility of
your results.

By then pressing the button Execute analysis' (appears if the constraints
are filled in and checked), the computation will start. A
pop-up will appear in the bottom right corner to indicate that the
computation is busy, and a notificationAnalysis finished’ will appear under
the button when ready. Then, you can access the other two tabs to view the results
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Figure 6.2. Hyptothesis specification option 2: Using R
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Chapter 7

Elapsed time estimates in virtual
reality and the physical world:
The role of arousal and emotional
valence

by I.J.M. van der Ham, F. Klaassen, K. van Schie, and A. Cuperus1

7.1 Introduction

The quality and number of applications of virtual reality (VR) environments are rapidly
increasing. VR allows for a controllable approximation of the real, physical world that can
be used in a wide range of situations (e.g., for entertainment or medical purposes). Yet,
there appear to be limitations to the extent to which the physical world can be imitated. For
instance, distance has been found to be underestimated in VR environments (e.g. Knapp &
Loomis, 2004; Finnegan, 2016; Stefanucci, Creem-Regehr, Thompson, Lessard, & Geuss,
2015) and the accuracy by which spatial information is perceived can easily be manipulated
in VR (e.g. Linkenauger, Bülthoff, & Mohler, 2015; Cuperus & Ham, 2016; Cuperus
et al., 2018) Such effects could have substantial impact on experimental and practical
implementations of VR, as they may interfere with perceptual processes relevant to the task
at hand. Underestimation in VR environments may also extend to the temporal domain, as
essential cues supporting time estimation (‘zeitgebers’) such as the position of the sun are
lacking or can easily be manipulated (Schatzschneider, Bruder, & Steinicke, 2016).

1Published as Van der Ham, J. M. E., Klaassen, F., van Schie, K., & Cuperus, A. (2019). Elapsed time
estimates in virtual reality and the physical world: The role of arousal and emotional valence. Computers in
Human Behavior, 94, pp.77-81.

Author contributions: IH and AC designed the study and collected the data. IH, FK and AC developed the
hypotheses. FK and KvS discussed the statistics. FK analyzed the data and wrote to the methods and results
section. IH wrote the final product, FK, KvS and AC provided written feedback.
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Several therapeutic applications of VR support a time compression effect; for instance,
breast cancer patients underestimated elapsed time after VR-mediated chemotherapy,
whereas they overestimated it after music-mediated chemotherapy (Chirico et al., 2016).
VR can also be used as a distraction method during medical procedures, in order to relieve
pain (Indovina et al., 2018). Thus, VR may be used during stressful procedures like
chemotherapy to produce an elapsed time compression effect. It then serves mainly as
a distracting circumstance, as it is thought to reduce the overall impact of the medical
procedure by making it seem to last shorter. However, the extent of this effect have been
found to depend on the type of cancer patient exposed to a VR element in their treatment.
Breast cancer patients were more likely to experience altered time perception, whereas lung
cancer patients were less likely. The cause of such individual variation remains unclear
(Schneider, Kisby, & Flint, 2010). Furthermore, other more exploratory findings suggest a
deviation of time perception in the opposite direction, a pilot study making use of a head
mounted device found longer perceived elapsed time for the virtual display compared to
the real world (Bruder & Steinicke, 2014).

The precise mechanisms underlying such distraction are unclear as of yet. It has been
suggested that mainly attentional and affective factors play a role in this process (e.g. Sharar
et al., 2016). Such attentional processes could potentially also connect to VR specific
time compression effects, analogous to the established spatial underestimation in VR
(e.g. Stefanucci et al., 2015). Therefore, the main goal of the current experiment was to
determine whether time compression effect exists for VR and if so, which factors of VR
presentation cause this effect. A better understanding of the working mechanism of this
process could help to optimize future medical interventions based on VR.

So far, studies on time perception in VR are limited and do not reflect on the precise
sources of such an effect: is it medium of VR itself that affects time perception, or could
it alternatively be caused by the content displayed in VR, as this is often not strictly
controlled for in comparisons between real world and VR time perception. Literature
concerning temporal processing highlights several factors as key players in distortions in
time perception, identical to those mentioned as likely mediators in the process of pain
relief by VR (Sharar et al., 2016). Emotion, as expressed by affective valence and arousal
level, is of particular importance. In addition, attentional processes are often mentioned in
relation to emotion; emotional input draws more attention (Angrilli, Cherubini, Pavese, &
Manfredini, 1997; Burle & Casini, 2001; Droit-Volet & Meck, 2007; Matthews & Meck,
2016; Noulhiane, Mella, Samson, Ragot, & Pouthas, 2007). Angrilli et al. (1997) have
studied time perception in relation to these factors and found that different patterns of
temporal processing are present for different levels of arousal; high arousal stimuli result in
shorter time perception and are emotion-driven, whereas low arousal stimuli are linked to
longer time perception and appear to be attention-driven.

So, the few VR studies on this matter suggest VR is linked to time compression and would
predict that time is perceived to go faster in VR compared to the physical world. As VR
has been found to elicit emotional responses (e.g. Felnhoger, 2015), one viable explanation
is that VR itself is the cause of distortions in temporal perception. Alternatively, it may
be the content of VR presentation that results in the elapsed time compression effect, as
this may well differ in level of arousal and emotional valence. Literature suggests that
in this case, high arousal stimuli are perceived to go faster than low arousal stimuli (e.g.,
Angrilli et al., 1997). Therefore, we conducted an experiment comparing time estimation of
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videos presented in VR to those presented in the physical world, in a highly similar visual
environment. The videos varied in their emotional content, and participants’ individual
ratings of valence and arousal were included in the analyses.

A better understanding of time perception in VR will not only help understand how humans
process virtual environments, but may also clarify how VR can best be used in medical
settings such as chemotherapy or other painful procedures. Is it really VR itself that
functions as a ‘time compressor’ or is it the content used, and could these also be presented
through a means of presentation other than VR?

7.2 Methods

7.2.1 Participants

Twenty-nine participants took part in the study (15 male, 14 female, mean age = 24.8, SD =

3.13). Exclusion criteria were a self-reported history of psychiatric or neurological disorders,
proneness to motion sickness, and visual impairments. The study was approved by the
Leiden University Ethical Committee of the Institute of Psychology (CEP16-0309/124).

(a) (b)

Figure 7.1. Experimental set up in (a) the RL cinema and (b) the virtual rendition of the RL
cinema.

7.2.2 Setting and materials

Participants viewed movie clips in a VR setting and in real life (RL). The RL situation for
this experiment was a movie theatre (Cinemec in Utrecht, the Netherlands), with a 5 by 9
meter digital cinema projector (DP2K-19B; Barco; Kortrijk, Belgium). Participants were
seated in an empty theatre, in a central position to the screen. The images shown in the VR
setting accurately resembled this setting; when participants wore the VR headset (Samsung
Galaxy S6 + Gear VR; Samsung Electronics; Daegu, South-Korea), they saw the movie
screen from the same position, with highly similar colour scheme and lighting (see Figure
1).

In both conditions, participants viewed a series of short movie clips. Two sets of movie
clips were created, each with a total duration of 18 minutes, containing 10 different clips of
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varying lengths (range: 7-90 seconds). The content of these movie clips was based on the
international affective picture system (IAPS; Lang (1997)). Appropriate movie equivalents
of the pictures in this system were selected by two of the experimenters, to reach a stimulus
set with substantial differences in levels of arousal and affective valence (e.g., crawling
spider, starving lion, people fighting, coconut shells).

7.2.3 Task design and procedure

Participants signed the informed consent form and proceeded with filling out a basic
questionnaire concerning demographic information. Then, they were instructed to put away
any watches or phones or devices with a clock before starting the experiment. Participants
were then shown a set of movie clips in either the real life movie theatre setting or the
VR environment. After each clip a blank screen appeared for 60 seconds, during which
they were asked to estimate the duration of the clip in seconds. For each movie clip,
the difference between the estimated time (ET) and actual time (AT) was computed, and
divided by the actual time to compensate for the difference in actual time of the clips. This
provides the relative difference (RD) in time estimation: RD = (ET – AT) / AT, where RD
= 0 indicates the estimated time was equal to the actual time, positive scores indicate the
proportional overestimation of actual time (i.e. time compression), and negative scores
indicate the proportional underestimation of actual time (i.e. time expansion). Furthermore,
participants rated level of arousal and affective valence they experienced while viewing
the clip on a Likert scale ranging from 1 calm/very negative to 9 aroused/very positive (see
Angrilli et al., 1997).

Each participant viewed both sets of movie clips; one in the RL setting and one in VR.
Participants were evenly distributed across the four experimental conditions, with the two
types of environment and two sets of movie clips combined in pseudorandomized order.

7.2.4 Statistical analyses

The main interest of this study is the effect of condition (VR vs RL), arousal, and valence
of movie clips on the relative difference in time perception. This can be analysed by means
of a regression analysis. However, the data contain a dependency within participants: the
measurements for different movies are nested within the participants (i.e., each participant
responds to multiple movies). Therefore, we analysed the data using a multilevel model
that can account for this dependency. The model was specified as follows:

Relative Difference in Time Perceptionim =b00 + b0cconditionim + b0aarousalim+

b0vvalenceim + ui0 + eim,

In this model the Relative Difference in Time Perception for person i and movie m is
explained by a grand intercept (b00), with individual variation (ui0, random intercept), the
condition in which person i watched movie clip m (conditionim, 0 = RL, 1 = VR), the
subjective level of arousal of the movie m (arousalim) and subjective affective valence
of the movie (valenceim), and the residual error (eim). Note that the main difference
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with a normal regression is that in the current model a random intercept ui0 is included.
This parameter accounts for individual differences in how people estimate time duration:
One person might generally overestimate duration, while another person might generally
underestimate time duration, but the effect of condition, arousal and valence can still affect
their personal baseline score similarly. Finally, rather than estimating this individual effect
for every person, a multilevel model assumes that these individual deviances from the grand
mean/intercept are normally distributed, with a mean of 0, and a variance τ2

u. If this variance
is 0, there is no individual variation.

Using the model above, we tested three informative, competing hypotheses:

H1 : b0c = 0, b0a > 0, b0v > 0
H1c : not H1

H2 : b0c > 0, b0a > 0, b0v > 0

H1 expresses that there is no effect of condition on the relative time estimation (i.e., time
estimation for VR and RL are similar), and that both arousal and valence have a positive
effect on relative time estimation (higher scores on valence/arousal correspond to a stronger
overestimation of movie clip duration). H1c is the complement of H1, which means that it
encompasses all other possible combinations of the parameters in H1. Finally, H2 specifies
the same effects of arousal and valence, and additionally that the VR condition results
in larger relative time perception scores. We are interested in comparing H1 with H1c
to learn whether this model is better than its complement and comparing H1 with H2 to
test the effect of condition. These hypotheses are not in the traditional format of null
and alternative hypotheses. They are more specific and can be considered ‘informative
hypotheses’ (Hoijtink, 2012). These hypotheses cannot be evaluated with frequentist
analyses, and therefore a Bayesian model was adopted. This makes for two substantial
differences compared to more standard analyses. First, a prior distribution has to be
specified for all parameters. Second, the Bayesian evaluation of hypotheses does not result
in p-values, but in two Bayes factors quantifying the relative evidence for H1 versus H1c

and for H1 versus H2. Both these elements will be discussed in more detail in the results
section.

7.3 Results

The hypotheses of interest cannot be compared to one another using frequentist statistical
analyses. Bayesian methods allow for the comparison of the specified hypotheses. We used
the Bayesian software Bain (Gu et al., 2017; Hoijtink, Gu, & Mulder, n.d.) that is designed
to evaluate hypotheses that may consist of inequalities (larger, smaller than) and equalities
between parameters. Bayesian analyses require the specification of a prior distribution for
the parameters. The software Bain computes a minimally informative prior distribution
using a minimal training sample of the data (Hoijtink et al., n.d.). This minimal training
sample is based on the estimates and covariance matrix of the relevant parameters. To
obtain these estimates the multilevel model was run using JAGS version 4.3.0 (Plummer,
2003) in R version 3.4.2 (R Core Team, 2013) with vague priors (see Appendix 10.3.1 for
the full JAGS code, including the prior distributions used).
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Table 7.1
Parameter estimates

Parameter HPD estimate 95% CI Standard error Std. coefficient
b00 -0.241 [-0.440 : -0.043] .100 -.221
b0a 0.009 [-0.009 : 0.028] .010 0.019
b0c 0.014 [-0.056 : 0.084] .036 0.028
b0v 0.010 [-0.011 : 0.030] .010 0.019
τe 5.164 [4.570 : 5.793] .313 1.368
τu 14.038 [7.151 : 23.872] 4.311 3.756

Note. Highest posterior density parameters estimates obtained from the Bayesian analysis, with a
95% Credible Interval, standard error and standardized parameter value. b00 denotes the intercept,
b0a, b0c and b0v the regression coefficient for arousal, condition and valence, respectively, τe

denotes the residual variance and τu the individual intercept variance.

Table 7.1 presents the Highest Posterior Density (HPD) estimates of the parameters in the
model (Bayesian equivalent of parameter estimates) along with the 95% Credible Interval
(Bayesian equivalent of confidence interval) and the standardized regression coefficients.
This table shows that there is reason to believe that the intercept is indeed random; the
variance of the random effect (ui0) is larger than 0, indicating that individuals differ in their
average time perception. Furthermore, it is evident that condition is the strongest predictor
for time perception through comparing the standardized regression coefficients.

In addition to the hypotheses, estimates and estimated covariance matrix, Bain requires
the sample size. The sample size determines the fraction of information taken from the
data to compute the prior distribution (Hoijtink et al., n.d.). The available data consist
of 20 repeated measures for each of the 29 individuals, resulting in a total of 580 data
points. These data points do not all contribute unique information because they are nested
in the 29 individuals. Computing the prior distribution using a sample size of 580 would
unfairly assume we had 580 independent pieces of information. The sample size should
be somewhat smaller than 580. If no variation existed among the measurements in each
participant, the effective sample size would be 29. Simulations researching power in
multilevel models tell us that observed power is a function of both the number of clusters
and the number of measurements (e.g., Maas & Hox, 2005; Scherbaum & Ferreter, 2008).
The effective sample size is between the number of clusters (29 individuals) and the number
of measurements (580).

We executed the analysis for different choices of sample Ne f f ective = 29, 180, 380, 580. The
minimum considered sample size of 29 reflects the sample size if no variation existed in
within-person measurements. This can be considered a ‘worst case scenario’: the computed
prior contains very little information and estimation because fairly unstable. The maximum
considered sample size reflects the sample size if there is no between-person variation. This
choice would overfit the estimation, because any between-person variation is not accounted
for. The sample sizes of 180 and 380 are the sample sizes we consider to reasonable reflect
the within-between person variance balance. By considering this range of sample sizes
for the computation of the prior distribution, we can compare the results and evaluate the
impact of the dependency on the results.
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Table 7.2
Bayes factors

Effective sample size 29 180 380 580
H1 vs. H1c 8.53 21.25 30.87 38.14
H1 vs. H2 2.23 5.54 8.05 9.95

Note. Bayes factors expressing the relative evidence in the data for H1 versus H1c (top row) or H2

(bottom row) for effective sample sizes 29, 180, 380 and 580. Bayes factors for the unstandardized
analysis are presented here. Bayes factors are similar for the standardized analysis.

Table 7.2 shows the Bayes factors that describe the evidence in the data for H1 relative
to H1c and H2. Both BF1c and BF12 increase as the effective sample size increases. The
direction and strength of the evidence is rather stable for Ne f f ective = 180, 380, 580. Both
BF1c and BF12 are considerably weaker only for Ne f f ective = 30. The sensitivity analysis
shows that for the more reasonable effective sample sizes, strengths of evidence are similar.

The hypothesis that there is no effect of condition, in combination with an effect for arousal
and valence (H1), is supported over its complement (in the first row in Table 7.2 the
Bayes factor is always larger than 1, indicating that H1 is 8.53/21.25/30.87/38.14 times
more supported than H1c) , and is preferred over H2 where there is an effect of condition
(presented in the second row in Table 2).

Note that other than the within-participant dependency, there is an additional dependency
within the clips viewed (i.e., for half of the participantsthe first set of movie clips was
presented in the VR condition, and the second set in the RL condition, and vice versa for
the the other half of the participants). This might create noise in the analysis if a particular
clip is structurally rated higher in the VR condition than in the RL condition or vice versa.
The fragments in each set of clips were selected to be similar, so the expected effect of this
dependency should be small or negligible. To check whether there was dependency within
movies, the hypotheses were evaluated in a more elaborate model that accounts for the
within-movie dependency in addition to the within-person dependency. For every movie, a
random intercept is included in the model. This model resulted in very similar results (see
Appendix 10.3.2 for the more elaborate model and the results).

7.4 Discussion

The use of VR is rapidly increasing in a range of applications, including clinical treatment
protocols. One characteristic of VR use in clinical context is that it is claimed to result
in compressed time perception, yet evidence is limited and the potential source of such
temporal compression is unclear. Analogous to compression found in the spatial domain,
the virtual display itself could be the cause. Alternatively, the affective nature of the content
displayed in VR may cause temporal compression. In this study we first addressed the
question whether time is perceived to pass by faster in VR. Next, we examined if such
an effect wasrelated to the medium of VR itself, or the content of the materials used, in
terms of emotional valence and arousal. Given the characteristics of the dataset, a Bayesian
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approach was used in which 3 hypotheses were tested and consequently compared based
on the evidence. The hypothesis with the strongest relative evidence was that both arousal
and valence positively contribute to the observed time compression effect, regardless of
the viewing condition. Thus, there is no evidence for a difference in temporal processing
between VR and RL. So, when filtering out the impact of the content of stimuli, the medium
of VR itself does not affect time perception in our experiment. Furthermore, this finding
suggests that the time compression effect that takes place is most likely the result of the
emotional content of the materials displayed. This finding is in line with Angrilli et al.
(1997), as higher arousal is linked to shorter time perception. Moreover, this would also
mean this process is mainly emotion-driven, not attention-driven, given Angrilli’s (1997)
description of the characteristics of higher arousal. This finding is analogous to a potential
explanation for how VR may cause pain relief during medical interventions, which has
been suggested to rely on affective factors (Sharar et al., 2016).

Reports on reduced time perception within clinical contexts, where unpleasant clinical
procedures are performed when VR is employed do not necessarily conflict with these
findings. As those comparisons typically use different visual materials in the VR condition,
the emotional content participants are exposed to also differs between the VR and RL
conditions. The current experiment’s set up uniquely allowed for a direct comparison, as it
made use of a VR environment highly similar to the RL environment, with identical video
materials.

It should be noted that the analyses do not allow for a distinction between negative and
positive emotional valence, as valence was represented as a continuous scale instead of
a dichotomy. Other limitations of the current study concern the demographics of the
participants; possibly gender has and effect (Hancock & Rausch, 2010) and age range in
particular may be different in clinical populations in which such VR interventions are used
and could therefore be considered in future research.

The current study taps into a relatively new area: how time is perceived when engaging
in virtual environments. This has implications for both experimental and clinical context.
The use of VR is increasingly popular in cognitive experiments and is often considered
a reliable source of information concerning human behavior in the real world. Yet, the
current data suggests that some caution is warranted. Even though the medium itself does
not affect how time is perceived, the emotions evoked by the stimuli at hand may cause a
difference. This could affect measures of time-related cognitive abilities, such as episodic
memory. In clinical context, this shows that it may be possible to achieve the desired
time compression effects through other means than VR, as the main cause appears to be
the affective content rather than the medium itself. Future research should be directed at
isolating the contributions of negative and positive valence, and other formats of stimulus
display.

7.5 Conclusion

The current findings shed light on how humans temporally process virtual environments: this
process is highly similar to that in RL. The emotional content of the materials used affects
temporal processing, regardless of condition. This may contribute to the implementation
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of VR in therapeutic settings, as VR itself may not be necessary to achieve the desired
time compression effect during medical procedures. To this aim, future research could be
directed at separating the roles of negative and positive emotional valence.
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Chapter 8

Using Bayesian methods to test
mediators of intervention
outcomes in Single case
experimental designs (SCEDs)

by M. Miočević, F. Klaassen, G. Geuke, M. Moeyaert, and M. Maric.1

8.1 Introduction

8.1.1 Single-case experimental designs (SCEDs)

Single-case experimental designs (SCEDs) methodology is a rigorous scientific research
approach that can be used to evaluate the effectiveness of an intervention (Horner et
al., 2005; Kazdin, 2011). SCEDs have shown to be a prime alternative for large-group
studies either as an initial study leading to specific hypothesis to be tested in a group
study, or as a stand-alone research study. This second option is especially important
in heterogeneous populations, or populations with rare incidence rates which may not
be uncommon in communication disorders research. Since SCEDs can also easily be
incorporated in clinical practice, they have the potential to enhance evidence-based practice
and stimulate collaboration between research and practice, unifying research questions that

1Manuscript submitted to Evidence-Based Communication Assessment and Intervention
Author contributions: MMa identified the need for methods to test mediation in SCEDs, and wrote parts of the

introduction and discussion. MMi and FK developed the methods in the paper and wrote the methods and results
section, and the annotated syntax in the appendix. MMo wrote the section on SCEDs, identified a suitable data set,
and provided feedback during the development of the methods. GG wrote the section on data, plotted the data,
and contributed parts of the introduction.
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emerge from clinical practice on one hand, and, on the other hand, research methodology
to test these questions on a single-client level.

The ultimate goal of SCEDs research methodology is to evaluate whether there is a
functional relationship between the intervention and change in the outcome measure of
interest. For this purpose, a case is measured repeatedly over time during a baseline
condition that is ‘interrupted’ by an intervention (also referred to as “treatment” in the
remainder of the paper). By using SCEDs methodology, a case serves as its own control,
detailed information related to changes across time can be obtained, and case-specific
intervention effects can be estimated. Because of these advantages, the design is becoming
increasingly popular over time and it has been the method of choice for over a thousand
studies to date (Wiessenekker, 2019). SCEDs are used across a variety of different research
fields ranging from rehabilitation and clinical psychology to special education, and are
known under a several different names such as interruinterrupted time series, single-subject
experimental design, intrasubject designs, N = 1 designs, etc. (Smith, 2012).

Together with the increasing interest in using SCEDs to establish an evidence base for
the effectiveness of treatments, there is a need for methods to quantify the size of the
intervention effect. During the last decade there have been efforts to develop and empirically
validate indices and effect sizes to report the strength and statistical significance of effects.
However, there is no best index (What Works Clearinghouse, 2017) and some indices
might be better in some conditions compared to others (Manolov & Moeyaert, 2016;
Vannest, Peltier, & Haas, 2018). Non-parametric nonoverlap indices quantify the degree
of non-overlap between the baseline and the treatment data clouds, such as Non-overlap
of All Pairs (NAP; Parker & Vannest, 2009), Tau-U (Parker, Vannest, Davis, & Sauber,
2011), Tau-C (Tarlow, 2016), Improvement Rate Difference (IRD; Parker et al., 2009).
and the Percent of Data Exceeding the Phase A Median Trend (PEM-T; Wolery, Busick,
Reichow, & Barton, 2008) just to name a few. Parametric approaches on the other hand
allow for a quantification of the size of a treatment effect together with an estimate of the
standard error. Some popular parametric approaches are regression-based effect sizes (i.e.,
Center, Skiba, & Casey, 1985; van den Noortgate & Onghena, 2003a, 2003b), multilevel
modeling (Shadish, Rindskopf, & Hedges, 2008), hierarchical linear modeling (Parker et
al., 2009), standardized mean differences (e.g., Cohen’s d, Hedge’s g; Shadish, Hedges, &
Pustejovsky, 2014) and the between-case standardized difference (Hedges, Pustejovsky, &
Shadish, 2012, 2013). All of these approaches can be used to test the effectiveness of a
therapy, i.e., provide an answer to a ‘yes/no’ question: ‘Does the treatment work for this
individual client?’

8.1.2 Moving beyond the ‘yes/no’ question: Mediation analysis

Nowadays, personalized medicine is becoming more popular, and we are aware that
interventions that work for one person may not work for another person, or may work
for multiple participants, but due to different causal mechanisms. When studying effects
on a group level, scientists implicitly assume that interventions work the same for all
group members, and neglect the unique reasons why certain interventions work (or do not
work) for clients. Without examining effects at the individual level, we cannot evaluate
the causal mechanism through which a treatment works (or does not work) for a given
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person. Generalizing causal relationships from the group-level to the individual level is not
recommended (Cattell, 1952).

Mediation analysis is used to evaluate intermediate variables (mediators; M) that transmit
the effect of an independent variable (X) on a dependent variable (Y) (MacKinnon,
2008). It provides an answer to a question: “How does the treatment work, through
which mechanisms?” For example, Maric and colleagues (Maric, Heyne, MacKinnon,
Widenfelt, & Westenberg, 2012) found that self-efficacy mediated the relationship between
cognitive-behavioral therapy (CBT) and school-related fear in adolescents. Thus, the theory
tested by mediation analysis in clinical settings is that a certain intervention will produce
changes in the mediator and that these changes will, in turn, affect intervention outcomes
(MacKinnon, 2008). So far, these intervention theories have, unfortunately, only been tested
in large-group studies. In the remainder of this section we describe a single mediation model
(see Figure 8.1) and the most frequent data-analytic approaches to testing for mediation.

(a) Total effect of the independent variable on
the outcome

(b) Single mediator model

Figure 8.1. Mediation models. The intercepts are included in the two models, but not in the
figure.

The effects of interest in the single mediator model (Figure 8.1) can be computed using
three equations:

Y = i1 + cX + e1 (8.1)
M = i2 + aX + e2 (8.2)
Y = i3 + c′X + bM + e3 (8.3)

where X is the independent variable, M is the mediator, and Y is the dependent variable.
Intercepts are i1, i2, and i3, c is the total effect of the independent variable on the dependent
variable, a is the coefficient relating the independent variable to the mediator, b is the
coefficient relating the mediator to the dependent variable in the model containing the
independent variable, c′ is the coefficient relating the independent variable to the dependent
variable (also called the direct effect), and e1, e2, and e3 are error terms assumed to follow a
normal distribution with a mean of 0 and variances of σ2

e1, σ2
e2 and σ2

e3 respectively.

One of the first approaches to testing for mediation was described in papers by Judd &
Kenny (1981) and Baron & Kenny (1986), and it consists of four steps: (1) establishing
that the independent variable affects the dependent variable (i.e., significant coefficient c
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in Equation 8.1); (2) establishing that the independent variable affects the mediator (i.e.,
significant coefficient a in Equation 8.2); (3) establishing that the effect of the mediator on
the outcome, controlling for the independent variable, is nonzero (i.e., significant coefficient
b in Equation 8.3); (4) establishing that the effect of the independent variable on the
dependent variable is weaker when we control for the effect of the mediator than when we
do not control for the effect of the mediator (i.e., coefficient c′ in Equation 8.3 should be
smaller than coefficient c in Equation 8.1). This approach falls under the category of causal
steps approaches to mediation analysis, and one of the less stringent and more powerful
causal steps methods is called the joint significance test, which only requires Steps 2 and 3.
However, none of the causal steps approaches provide a numerical estimate of the value
of the indirect (mediated) effect, and they have less power to detect the mediated effect
relative to methods that compute and test the significance of the mediated effect directly
(MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002).

The mediated (indirect) effect is most often computed as the product of coefficients ab,
and in linear models with no missing values, we obtain the same value of the mediated
effect if we compute it as the difference of coefficients c− c′ (MacKinnon, Warsi, & Dwyer,
1995). Modern approaches to mediation analysis test the significance of the mediated effect
by computing confidence intervals for the mediated effect and evaluate whether 0 is in
the interval. Modern methods that have the most power either model the distribution of
the mediated effect appropriately (i.e., using the distribution of the product of two normal
variates; Craig, 1936; Lomnicki, 1967; MacKinnon et al., 2002; MacKinnon, Lockwood,
& Williams, 2004) or do not make any assumptions about the distribution of the mediated
effect (e.g., bootstrap and Bayesian methods; MacKinnon et al., 2004; Yuan & MacKinnon,
2009).

8.1.3 Bayesian mediation analysis

The mediated effect can be computed and evaluated in the frequentist (classical) framework
using methods such as ordinary least squares regression or structural equation models
fit using Maximum Likelihood estimation. It is also possible, and sometimes more
advantageous, to do mediation analysis in the Bayesian framework (Miočević, MacKinnon,
& Levy, 2017; Yuan & MacKinnon, 2009). In the Bayesian framework, the analysis starts
by specifying prior distributions for all freely estimated parameters in the model. In the
case of the single mediator model, the parameters that are assigned priors are those from
Equations 8.2 and 8.3: the intercepts i2 and i3, regression paths a, b, and c′, and residual
variances σ2

e2 and σ2
e3. The next step of a Bayesian analysis requires updating the prior

distributions with the observed data using Bayes’ theorem, in order to obtain the posterior
distribution of the model parameters: p (θ | data) ∝ p (data | θ) p (θ) , where p (θ | data)
denotes the posterior distribution of the parameters, p (data | θ) denotes the likelihood
function based on the observed data, and p (θ) denotes the prior distribution for the set of
freely estimated parameters. The inferences about the parameters of interest are based on
the posterior distributions that can be summarized to obtain a point summary (e.g., mean or
median) or an interval summary. The distribution of the mediated effect is approximated
using values from the posterior distributions for coefficients a and b. These distributions
can be obtained using Markov Chain Monte Carlo (MCMC), implemented in various
software (for a tutorial on using MCMC, see Sinharay, 2004). The MCMC draws can
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be used to approximate the posteriors, but also for hypothesis testing. Bayesian statistics
have a unique take on hypothesis testing, and allow for quantifying relative evidence for
different hypotheses using a Bayes factor (Kass & Raftery, 1995). Bayesian hypothesis
testing is very flexible in terms of hypotheses that can be compared. Expectations about
the directions of the effect (e.g., the sign of a regression coefficient) can be formulated as
so-called informative hypothesis (Klugkist et al., 2005). This allows both for the inclusion
of expectations about the directions of effect in the hypothesis, and for testing multiple
effects simultaneously. Additionally, more than two hypotheses can be compared at the
same time, thus allowing for the selection of the best hypothesis out of the entire set. For
the sake of space, we cannot provide a more extensive description of Bayesian methods for
mediation analysis and informative hypothesis testing, and we refer the interested reader
to chapters by Miočević (2019), the paper by Yuan & MacKinnon (2009), the book by
Hoijtink (2012) and the paper by Béland, Klugkist, Raîche, & Magis (2012).

The above methods are frequently used for group-level (i.e., studies with N > 1) mediation
analyses. There has been only one proposed method for mediation analysis in context
of SCEDs (Gaynor & Harris, 2008). However, the proposed method does not yield a
numerical estimate of the mediated effect, nor does it allow the researcher to quantify the
support of the mediation hypothesis from the data. Knowledge about individual participants’
mediators of treatment outcomes could inform treatment-decision making and lead to a
more evidence-based practice (Maric, Prins, & Ollendick, 2015). Furthermore, knowing
the mediator(s) that transmit the effect of an intervention on the outcome(s) of interest can
help in tailoring the treatment to each patient.

8.1.4 This study: SCEDs meeting mediation analysis

In this paper, we describe two methods for evaluating whether there is a mediated effect:
a method that can compute the value of the mediated effect using repeated measures of
a hypothesized mediator and an outcome of interest collected from a single participant,
and a method that tests whether this mediated effect is different from 0. The methods
developed and described in this paper will use Bayesian estimation for the parameters in the
mediation model, and this is the first paper (to our knowledge) that includes both parameter
estimation and informative hypothesis testing for mediation models. We will focus on the
regression-based effect size originally introduced by Center et al. (1985) because of its
flexibility. In order to estimate the regression-based effect size, a piecewise regression can
be run which results in the estimate of the outcome score at the start of the SCED, the
time trend during the baseline, the immediate intervention effect (i.e., change in outcome
score at the start of the intervention phase) and the difference in time trend between the
baseline phase and the intervention phase. This results in two regression-based effect sizes
of interest, namely an immediate intervention effect and an intervention effect on the time
trend.

The following sections describe the data for the empirical example and how Bayesian
piecewise regression analysis can be used to test for mediation in a SCED.
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8.2 Empirical example

8.2.1 Data

The dataset for the empirical example comes from a study of the effectiveness of wearing the
Playskin Lift™exoskeletal garment on object exploration and cognitive outcomes in infants
that were born preterm and/or had brain injuries (Babik et al., 2019). The exoskeletal
garment was designed to assist antigravitational movement of the infant, which was
hypothesized to aid object grasping and exploration. For a more detailed and comprehensive
description of the dataset and measurement procedure of this study, the reader is referred to
the article by Babik and colleagues (2019).

The dataset is a multiple baseline A1B1A2-design, which means that it consists of three
phases: the first phase is a baseline phase (A1), which was designed to assess the baseline
level of the infant’s scores on various variables of object exploration and reaching. The
exoskeletal garment was only worn during a subset of assessments in this phase. The amount
of measurement occasions in this baseline phase was alternated across participants, ranging
from 3 to 5 occasions. The second phase (B1) is the treatment phase, in which parents
were asked to perform a structured set of daily exercises of 40 minutes with the infants
using the exoskeletal garment. The third phase (A2) was a follow-up phase, which was
designed to assess whether there were remaining effects of using the exoskeletal garment
after the treatment was stopped, and was similar to the baseline phase. As mentioned before,
because the effect of the intervention on the outcome score is replicated across multiple
participants, the SCED study is more externally valid (i.e., more generalized conclusions
about the intervention effectiveness can be obtained).

At each measurement occasion, six types of assessments were conducted. Each assessment
consisted of a toy presentation to the infant, after which the reaction of the infant was
measured in a structured manner. This assessment was conducted in 2x3 conditions, both
with the exoskeletal garment off and on, and with the toy presented at hip, chest, or eye
level. All assessments were recorded on video. For each of these assessments, several
variables were recorded, such as grasping ability and the percentage of time the infant
looked at the toy.

For the purposes of the current example, a subset of the variables of one participant will be
used to illustrate the suggested analysis methods. The mediation hypothesis was that daily
exercise with the exoskeletal garment (X; treatment) leads to better grasping ability (M;
mediator), which leads the infant to be more interested in toys and more time spent looking
at the toy (Y; outcome). Grasping was measured as the percentage of the total assessment
time in which the infant had any type of contact with the toy, i.e. the sum of bimanual and
unimanual contact. Looking was measured as the percentage of the total assessment time
in which the infant directed their eyes at the toy. Data for the empirical example are plotted
in Figure 8.2. One condition of measurements was selected for the illustrative analysis
here: with the exoskeletal garment off and the toy presented at the chest level. Arguably,
the aim of the treatment in the study by Babik and colleagues (in press) was to improve the
independent grasping abilities of the infants, i.e. without wearing the exoskeletal garment.
Note that, for a more complete analysis of this data, the proposed analysis can be repeated
for all six conditions and that the methods we illustrate use only the baseline phase (i.e., A1)
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and the intervention phase (B1), but could be extended to include additional phases (e.g.,
A2, which presents the maintenance phase in the present data set). Also note that using data
of only one participant of a multiple baseline study does not allow the analysis to make
generalizations (i.e., external validity) about the intervention and the mediation effect.

Figure 8.2. Graphical display of the scores of Grasping (dashed lines and triangles) and
Looking (solid lines and points) of participant 201 of the study by Babik et al. (in press).
Phases are denoted in the upper left corner of each phase.

For readers interested in using the example code provided in Appendix A, it is important to
organize the data in a specific format for the code to work. The data set needs to contain
the following variables: (1) Time, which denoted the measurement occasion and in the
current analysis ranges from 1-12; (2) Phase, which denotes whether a given observation
belongs to the baseline phase (Phase = 0) or the treatment phase (Phase = 1); (3) Time1,
which is equal to the value of Time - 1 (and ranges from 0 to 11 in the present data set); (4)
Time2, which is equal to the variable Time1 minus the number of measurement occasions
in the baseline phase and for which a value of 0 denotes the start of the treatment phase
(in this data set, Time2 ranges from -4 to 7); (5) phase_time2, which denotes the time
spent in the treatment phase, and has a value of 0 during the baseline phase and at the first
occasion in the treatment phase, and values of 1, 2, 3, etc. for subsequent observations in
the treatment phase; (6) ScoreM, which are scores on the mediator on occasions 1-12; (7)
ScoreY, which denotes the score on the outcome at a given measurement occasion (in the
present data set, there are 12 values of ScoreY); (8) Tmed, which represents scores on the
mediator with a missing value in the first row and scores on occasions 1-12 as values in the
subsequent rows; and (9) Tout, which are scores on the outcome variable with a missing
value in the first row, and scores on occasions 1-12 as values in the subsequent rows. The
current formatting of the data set will yield a data set with the number of rows equal to the
number of observations plus one; also, variables Time, Phase, Time1, Time2, phase_time2,
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ScoreM, and ScoreY will be missing a value in the last row, while variables Tmed and Tout
will be missing a value in the first row. This data format is necessary for executing the
analyses for the proposed methods.

8.2.2 Methods

The majority of data analytic methods for SCEDs were developed with the goal of evaluating
the effect of a change in phase on a single variable. In the single mediator model for SCEDs,
both the hypothetical mediator and outcome are measured repeatedly over at least two
phases (i.e., baseline phase and intervention phase). Given that our goal is to compute the
numerical value of the indirect effect, we automatically excluded methods that quantify
percentage of nonoverlapping data (Scruggs, Mastropieri, & Casto, 1987). We opted for
piecewise regression analysis instead, as it allows for quantifying the change in the mediator
due to the change in phase (a-path in Figure 8.1) and change in outcome due to the change
in the mediator (b-path in Figure 8.1) controlling for the effect of phase. For the purposes
of the current analyses, the equations for piecewise regression analyses of the mediator and
outcome are as follows:

M = b0M + b1Mtime1 + b2M phase + b3M phase_time2 + b4M Mt−1 + eM (8.4)
Y = b0Y + b1Y time1 + b2Y phase + b3Y phase_time2 + b4Y Mt−1 + b5YYt−1 + eY (8.5)

Due to the specific coding of the predictors, regression coefficients from the piecewise
regression analysis provide estimates of the level of the first time point of phase A (b0M for
the mediator and b0Y for the outcome), of the trend in phase A (b1M for the mediator and
b1Y for the outcome), of the change in level at the start of phase B (b2M for the mediator
and b2Y for the outcome) and of the change in trend between the two phases (b3M for
the mediator and b3Y for the outcome; Manolov et al., 2016). The additional terms in
the equation for the outcome represent the autoregressive (b4M) and lagged effects of the
mediator (b4Y ) controlling for the autoregressive effect (b5Y ).

There are two reasonable definitions for the effect of the treatment on the mediator (a path
in Figure 8.1) in this context: the effect of phase change can either be measured as the
change in level (b2M), or as the change in trend between the two phases (b3M). Defining the
a path as the change in level between phases allows for computing the indirect effect of the
phase change on the outcome through changes in the level of the mediator. Defining the a
path as the change in trend between two phases leads to an indirect effect that quantifies
the effect of change in phase on the outcome through change in the trend of the mediator.
The effect of the mediator on the outcome (b path in Figure 8.1) is represented by the b4Y

coefficient from Equation 5 and the direct effect (c′ path in Figure8.1) of phase on the
outcome controlling for the effect of the mediator is represented either by coefficient b2Y (if
the direct effect is defined as a change in level) or using the coefficient b3Y (if the direct
effect is defined as the change in trend).

There are two ways to conceptualize the mediated effect in the present example: 1) as the
product of coefficients b2Mb4Y which represents the change in the value of the outcome due
to the change in the level of the mediator following a change in phase, and 2) as the product
of coefficients b3Mb4Y which represents the change in the value of the outcome due to the
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Table 8.1
Ordinary least squares estimates of parameters in Equations 8.4 and 8.5 for Grasping (M)

and Looking (Y) and priors for the Bayesian analysis based on these results.

Parameter Estimate Standard Error p-value Prior
b0M (Intercept) 93.581 20.773 0.004 N(93.581, 1000)
b1M (Time1) -18.515 8.755 0.079 N(-18.515, 1000)
b2M (Phase) 34.110 20.515 0.147 N(34.110, 1000)
b3M (phase_time2) 28.541 9.081 0.020 N(28.541, 1000)
b4M (Tmed) -0.797 0.247 0.018 N(-0.797, 1000)
b0Y (Intercept) -7.934 7.919 0.362 N(-7.934, 1000)
b1Y (Time1) 6.167 3.270 0.118 N(6.167, 1000)
b2Y (Phase) 78.672 9.026 <0.001 N(78.672, 1000)
b3Y (phase_time2) 0.192 3.423 0.957 N(0.192, 1000)
b4Y (Tmed) -0.009 0.103 0.935 N(-0.009, 1000)
b5Y (Tout) -0.431 0.099 0.007 N(-0.431, 1000)

Note. The coefficients in the table correspond to the coefficients in Equations 8.4 and 8.5, and
the variable names in parentheses correspond to the labels in R output. The symbol N denotes a
normal prior distribution where the first parameter represents the mean and the second parameter
represents the variance. The analyses were run in rjags so the sample code contains the precision
parametrization meaning that the second parameter in the normal priors is the precision and the
residual precisions are assigned Gamma (G) priors with both hyperparameters equal to .5.

change in the trend (slope) of the mediator following a change in phase. The procedures
for evaluating whether these indirect effects are different from 0 require approximating the
distributions of b2Mb4Y and b3Mb4Y , and covariances between b2M and b4Y and between
b3M and b4Y , which was more straightforward to obtain in the Bayesian framework. The
mediated effect is evaluated using two approaches: parameter estimation and hypothesis
testing. Both analyses were performed in R (R Core Team, 2013) using the packages rjags
(M. Plummer, 2018) and the software JAGS (Plummer, 2003) for the Bayesian piecewise
regression, the R package coda for the computation of intervals for the mediated effects
(B. Plummer M., 2018), and the R package bain for hypothesis testing (Gu et al., 2019).
The annotated R syntax for the analysis is available in Appendix A. The analysis consisted
of the following five steps. Step 1-3 are preparation for Step 4 (parameter estimation) and
Step 5 (hypothesis testing):

Step 1. Obtain frequentist estimates of the parameters in Equations 8.4 and 8.5 using the
lm() function. The estimates and standard errors are shown in Table 8.1.

Step 2. Formulate priors for the parameters in the Bayesian estimation of the parameters
in Equations 8.4 and 8.5. These priors have data dependent mean hyperparameters and
variance hyperparameters that are diffuse for the scale of the variables (as shown in the last
column of Table 8.1). In other words, the priors for each intercept and regression coefficient
encode the assumption that the best guess for these parameters is equal to the OLS estimate
of that parameter, and the prior variances indicate limited confidence in these best guesses.
Data dependent priors are somewhat controversial because they lead to an underestimation
of the uncertainty of the parameter estimate/posterior summary (see e.g. Darnieder, 2011).
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However, in this situation, fitting the model with normal priors centered at 0 for each
intercept and regression coefficient leads to posterior means and medians that are noticeably
lower in absolute value relative to the frequentist estimates of the corresponding parameters
(probably due to the small sample size). Using data dependent priors alleviates this issue.

Step 3. Fit a Bayesian model for Equations 8.4 and 8.5 and obtain Markov Chain Monte
Carlo (MCMC) draws for all parameters. Preliminary analyses indicated that the chains
converge to the posterior by 100,000 iterations. We discarded the first 100,000 iterations,
and ran an additional 100,000 iterations to approximate the posterior distribution.

Step 4. Approximate and summarize the posterior distributions of the mediated effects.
The first approach to evaluating the size of the mediated effects requires approximating the
posterior distributions of these parameters by computing the products b2Mb4Y and b3Mb4Y

using the 100 000 retained draws for these parameters. In order to make inferences about the
values of the indirect effects, the posterior distributions need to be summarized using point
and interval summaries. Here we use the posterior median instead of the posterior mean
because the distribution of the product of two regression coefficients is often asymmetric
(Craig, 1936; Lomnicki, 1967). The two options for interval summaries of the posterior are
the equal-tail credibility intervals obtained using the alpha/2 and 1-alpha/2 percentiles of
the posterior distribution, and the Highest Posterior Density (HPD) intervals which have
the property that no value outside of the interval is more probable than values within the
interval. Given the potential asymmetry of the posteriors for the indirect effects, we use
HPD intervals. The last summary of the posterior is the probability that the mediated effect
is of the hypothesized sign (here, positive) computed as the proportion of posterior draws
of the mediated effect that are either 0 or positive (as illustrated in Miočević et al., 2017).

Step 5. Test hypotheses that the mediated effects are nonzero. The second approach to
evaluating whether the indirect effects are different from 0 requires the specification of
hypotheses that evaluate the presence of a mediated effect (akin to the joint significance test
in the frequentist framework where the presence of a mediated effect is established if the
a-path and b-path in the single mediator model are both significantly different from zero;
for more on the logic and statistical properties of the joint significance test, see MacKinnon
et al., 2002). A set of four hypotheses of interest, presented in Table 8.3, was defined for the
Playskin Lift™dataset presented in this paper. These hypotheses were formulated based on
theoretical expectations for the current dataset. For other research questions, the expected
signs of the a and b-paths may be different. Because the a-path can be conceptualized in
two ways, this set of hypotheses was evaluated using both b2M and b3M as the a-path, while
the b-path was conceptualized as b4Y , as shown in the third and fourth columns of Table
8.3.

This set of hypotheses can be used to test the presence of a positive mediated effect. The
first hypothesis specifies our main theoretical expectation, namely that both the a-path
and the b-path are positive and different from zero. We can compare this hypothesis to its
complement, H1c, that says that either the a-path, or the b-path, or both are not positive.
This is a generic ‘catch-all’ alternative hypothesis. By comparing H1 to H1c we can evaluate
whether there is a hypothesized positive mediated effect or not. Additionally, H2 and H3 are
more precise falsifications of the hypothesized mediated effect under H1. H2 specifies that
the a-path is negative (as opposed to positive under H1), without placing any constraints on
the b-path. H3 specifies that the b-path is negative (as opposed to positive in H1), without
placing any constraints on the a-path.
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Table 8.2
Mediation hypotheses for the Playskin LiftT M dataset.

Hypothesis In words a-path as change in
level

a-path as change in
trend

H1: a-path > 0 &
b-path > 0

both the a-path and the
b-path are positive

H1: b2M > 0 & b4Y

> 0
H1: b3M > 0 & b4Y

> 0
H1c: not H1 either the a-path or the

b-path or both are not
positive

H1c: not H1 H1c: not H1

H2: a-path < 0 the a-path is in opposite
direction (negative)

H2: b2M < 0 H2: b3M < 0

H3: b-path < 0 the b-path is in opposite
direction (negative)

H3: b4Y < 0 H3: b4Y < 0

Bayes factors can be used to compare each pair of these hypotheses to each other and
quantify the relative evidence for each hypothesis. The R package bain (Gu et al., 2019)
was used to evaluate the above hypotheses. To obtain the Bayes factors, bain requires
the sample size and the estimated covariance matrix for the parameters in the hypotheses,
which we obtained from the MCMC output in Step 3. The interested reader is referred to
the bain manual (Hoijtink, Mulder, Lissa, & Gu, 2019).

A Bayes factor quantifies the evidence for one hypothesis relative to another. For example,
if BF12 = 3, this means that the data are three times more likely to occur if H1 is true
compared to when H2 is true. If all pairwise Bayes factors for a set of hypotheses are
known, these can be used to update the prior probabilities of the hypotheses to obtain the
posterior probabilities. Each hypothesis has a prior probability, that is, the probability that
a hypothesis is true before observing the data. Using the posterior probabilities for a set of
hypotheses, we can select the best hypothesis from a given set.

8.3 Results

Across all 10 participants, the original study by Babik et al. (2019) found significant
improvement of the mean of Grasping and Looking between the baseline and intervention
phase. Looking and only unimanual grasping at the object had a significant immediate
change at the beginning of the intervention phase. Compared to the time trend in the baseline
phase, Grasping had a larger time trend (i.e. rate of improvement) in the intervention phase,
but Looking did not have a significantly larger time trend in the intervention phase. Thus
there is some evidence for an effect of the independent variable on the dependent variable
(path c in the top panel of Figure 8.1), and for an effect of the independent variable on
the mediator (path a in the bottom panel of Figure 8.1). The mediation analysis presented
below provides additional insights about whether the effect of the intervention on Looking
is mediated by improvement in Grasping for one of the participants.
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8.3.1 First method: Parameter estimation

The results from Step 4 require evaluating the posterior distribution of the mediated effects
b2Mb4Y and b3Mb4Y . The posterior summaries of the mediated effects are presented in
Table 8.3 and shown in Figure 8.3. Note that the posterior medians for both mediated
effects were negative. The Highest Posterior Density (HPD) intervals for the indirect effect
through changes in the level of the mediator, b2Mb4Y , ranged from −9.885 to 7.881, thus
indicating that 0 is among the most probable values for this effect. Furthermore, 42% of the
posterior draws were positive, thus indicating that there is 42% probability that the indirect
effect through changes in the level of the mediator is positive. The HPD intervals for the
indirect effect through changes in the trend of the mediator, b3Mb4Y , ranged from −7.434 to
5.915, thus indicating that 0 is, once again, among the most probable values for this effect.
Furthermore, 42% of the posterior draws were positive, thus indicating that there is 42%
probability that the indirect effect through changes in the trend of the mediator is positive.
Overall, the posterior summaries suggest that there was no indirect effect of phase change
on Looking through changes in level or trend of Grasping. Thus, in this case, no evidence
of mediated effect was found.

(a) Indirect effect (level) (b) Indirect effect (trend)

Figure 8.3. Plot of posteriors for the mediated effects through the changes in level (b2Mb4Y )
and trend (b3Mb4Y ).
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Table 8.3
Posterior summaries of b2Mb4Y and b3Mb4Y .

b2Mb4Y b3Mb4Y

posterior median -0.481 -0.526
95% HPD interval [-9.885, 7.881] [-7.434, 5.915]
p(ab ≥ 0) 42% 42%

8.3.2 Second method: Hypothesis testing

The results from the Bayesian hypothesis comparison for both representations of the a-path
are presented in Table 8.4. H1 has the highest posterior probability of the set of hypotheses
for both conceptualizations of the a-path. The differences between the results for the two
conceptualizations of the a-path are minimal, and for the sake of brevity we will only
discuss the results for the change in level. We find that H1 is .454/.321 ≈ 1.41 times more
supported by the data than H3 and .454/.217 ≈ 2.09 times more supported than H1c. There
appears to be no evidence for a negative b-path (H2), since each of the other hypotheses
receives at least 24 times more support. There is a slight preference for H1 relative to its
complement H1c and H3.

Note that the posterior probabilities in Table 8.4 were obtained using equal prior
probabilities. That is, all hypotheses received the same prior weight in order to make a fair
comparison. The results presented here with equal prior probabilities are in agreement with
our expectations. Had we encoded our prior beliefs in subjective prior probabilities and
updated those with the evidence from the data, the posterior probability for H1 would be
higher.

Table 8.4
Posterior probabilities

a-path as change in level a-path as change in trend
H1 .454 .463
H1c .217 .215
H2 .009 < .001
H3 .321 .322

Note. Probabilities in boldface indicate the hypothesis with the highest probability. These
probabilities were obtained with equal prior probabilities.

8.4 Discussion

Identifying mechanisms through which a certain program achieves its effects is extremely
important for the identification of the most potent program components and therefore for the
conduct of the more evidence-based personalized mental health care (Ng & Weisz, 2015).
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In the original SCED study that investigated effectiveness of a Playskin Lift™intervention
(Babik et al., 2019) two outcome variables were investigated: Looking at and Grasping for
objects. Over the whole group of single-case participants significant improvement of the
mean of Grasping and Looking between the baseline and intervention phase was found.
However, the theoretical hypothesis underlying Playskin Lift™intervention points to the
following: daily exercise with the exoskeletal garment would lead to better grasping ability,
and this would, in turn, lead to infant looking more at toys. The testing of this mediating
hypothesis was illustrated in the current study using data from one preterm born infant who
underwent Playskin Lift™intervention. The methods described in this paper allowed for
the computation of the numerical value of the indirect or mediated effect and for testing
whether this effect is of the hypothesized sign in SCEDs with two phases (i.e., a baseline
phase, A1, and a treatment phase, B1) in a single-participant. Bayesian parameter estimation
and Bayes Factors are two ways of approaching the same question, however, the results
of each approach are interpreted differently and the two approaches may require different
numbers of repeated measures of the same participant for optimal performance. We suggest
using both approaches in tandem because together they provide more information about the
mediated effect(s). In the case of our single participant, no mediated effect of Grasping was
found on the Looking efforts of the participant.

We might conclude that for this infant, Playskin Lift™, does not affect looking behavior
through changes in grasping behavior, but through some other mechanism, such as increases
in parental guidance. In this way individual mechanisms of change could be identified and
the most potent therapy techniques that affect changes in these mechanisms. The field of
communication disorders could profit from single-case methods in a great way because
it is characterized by (i) a great amount of interventions to treat diverse communication
problems; (ii) most interventions are seen as evidence-based, as informed by information
from group studies; and (iii) large heterogeneity in clients dealing with communication
problems.

8.4.1 Limitations

Note that the default coding of the predictors in piecewise regression in the syntax in
Appendix A assumes that the phase effect takes place in the first measurement of the second
phase. However, change might not be immediate for all therapies, and the syntax needs
to be modified to accommodate a different expectation about the timing of the effect. The
same is true for the assumed timing of the effect of the mediator: there is a lag of 1 between
the mediator and outcome, and this may not be suitable for all processes. Researchers can
modify the code we provide to increase the time to the effect, however, in many situations
it is very difficult to formulate a prior hypothesis about the appropriate amount of time
necessary for changes in the hypothesized mediator to produce changes in the outcome.
If a researcher is for instance interested in estimating the effect of the intervention at the
third observation point in the intervention phase, then the time can be centered around that
observation point. For more information of the influence of centering time on the estimated
intervention effect using piecewise regression, see Moeyaert, Ugille, Ferron, Beretvas, &
Noortgate (2014).

The Playskin Lift™dataset was limited to only twelve repeated measurements over time. A
larger number of observation points is preferred to obtain more certainty in the results. A
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simulation study could provide more insight in how much the current sample size affects the
results. The sample size also affects the Bayes factor. For any sample size, the Bayes factor
has a clear interpretation: the evidence in the data for one hypothesis relative to another.
However, it is difficult to say when the evidence is sufficiently strong to rule one hypothesis
out. With a small sample size, it is less likely to observe a Bayes factor expressing strong
evidence for either hypothesis. Our results showed small Bayes factors and we do not know
whether that is because there is indeed only a weak preference for one hypothesis over
another, or whether we did not have a sufficient number of observations to obtain stronger
evidence.

8.4.2 Future directions

The methods described in the paper have yet to be tested in simulation studies to evaluate
the required number of observations per phase for adequate power to detect the mediated
effect. Furthermore, future research should develop guidelines and sensitivity analyses for
evaluating the timing of the effect of the treatment on the mediator and the effect of the
mediator on the outcome.

Data of a single-participant presented in this study was selected from a larger SCED data
set, but the same mediation hypothesis can be replicated for the other participants. This
data set also used a multiple baseline SCED design (different SCEDs were randomized
to different lengths of the baseline A phase). As a consequence, when we replicate our
mediation analysis across the other participants, internal and external validity increases.
Because frequentist estimates of the regression-based effect sizes have a known sampling
distribution, their inverse squared standard error can be used as a weight in meta-analyses.
By synthesizing effect sizes across cases and studies, more generalized decisions can be
made related to the effectiveness of an intervention, which is a significant contribution
to evidence-based practices and policy decisions (Moeyaert et al., 2013a, 2013b, 2014).
However, when combining effect sizes across studies, standardization of the outcome score
is needed as it is unlikely that exactly the same scale is used across different studies. Future
research should extend the methods described in this paper to include standardization, as
described by van den Noortgate & Onghena (2007) for frequentist regression-based effect
sizes.

8.4.3 Conclusion

This paper illustrated two Bayesian methods for mediation analysis using repeated measures
of the potential mediator and outcome of interest from a single participant. The two methods
were illustrated using data of a single participant from the Playskin Lift™intervention, and
the syntax is provided so researchers can apply the new methods to their data. The new
methods have yet to be examined in simulation studies to find out the optimal number
of repeated measures required for adequate power to detect the indirect effect in SCEDs.
Testing mediators of intervention effects in SCEDs conducted in the field of communication
disorders can add valuable information about the mechanisms through which interventions
achieve (or do not achieve) the desired effects for a given patient.
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Chapter 9

Discussion

In this dissertation practical, philosophical and methodological matters regarding Bayesian
informative hypothesis testing have been presented. A summary of the findings and
conclusions of the research presented in the dissertation is provided in Section 9.1. Section
9.2 discusses and reflects on the value of these findings and their practical considerations
for the field. Section 9.3 concludes this dissertation by discussing potential further research
topics and opening the way for a next update on Bayesian informative hypothesis testing.

9.1 A quick summary

Bayesian informative hypothesis testing has been making its appearance in applied social
and behavioral research (Mulder & Wagenmakers, 2016). The development of software for
Bayesian hypothesis testing (Gu et al., 2019; JASP Team, 2018; Morey & Rouder, 2018)
has increased the use of Bayes factors as a tool for hypothesis testing. With increase use,
practical problems and theoretical questions present themselves. This dissertation discussed
a few of these considerations.

Chapter 2 presented four approaches to determine the sample size when Bayesian
informative hypothesis testing is used. Conditional and unconditional error probabilities
can be used to plan the appropriate sample size for a study that aims to compare hypotheses
with a Bayes factor. Researchers need to define their hypotheses, the expected effect sizes
under each of these hypotheses of interest, the desired conditional and unconditional
properties of the Bayes factor. Chapter 2 presents four approaches to sample size
determination. The level of desired evidence or type of error probability to be controlled
determines the required sample size. How this error level should be determined depends on
the desired conclusion. This implies there is no one method fits all to determine sample
size. The R package BayesianPower Klaassen (2019) presented in Chapter 6 enables
applies researchers to compute the required sample size for their Bayesian informative
hypothesis test.

Chapters 3 and 4 illustrate the importance of matching the research question to the
analysis. Many hypotheses tests evaluate the presence of a population effect size, while the
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conclusions and research questions concern individial effects. An effect at the population
level might not hold at the individual level. Chapter 3 presents a method that allows for the
analysis of individual effects and aggregating that information. This method differs from
updating or sequential analysis, which means that hypotheses can be evaluated or parameters
estimated repeatedly as more data becomes available. Aggregating or synthesizing evidence
implies that the information from multiple sources is combined to draw conclusions about
the collection of datasets. This distinction between updating and evidence synthesis is an
important distinction emphasizes the importance of awareness of the question of interest.
Chapter 4 presents a step by step description of how to execute such an analysis, and
Chapter 6 presents the R Shiny application that makes these methods accessible.

Chapter 5 considers the importance of specifying prior probabilities to better enable
knowledge updating. Any individual research project contributes only one step of the
updating cycle. It is important to always consider the larger cycle, so that the appropriate
information can be provided. While the evidence might be the relevant output of a project, in
order to enable other to use and evaluate your output prior probabilities are required. Without
prior probabilities, readers cannot evaluate the obtained evidence properly. Therefore, it is
important to specify the prior probabilities chosen and the rationale behind them. Chapter 5
defines and discusses the role of prior probabilities, and presents and evaluates an elicitation
procedure for prior probabilities.

Chapter 7 and 8 present two applied projects where informative hypotheses were evaluated,
demonstrating the wide range of applications of informative hypotheses. In Chapter 7 an
experimental repeated measures dataset is presented. The dataset is modeled by means of a
hierarchical model. The theoretical expecations are translated in informatve hypotheses
and evaluated by means of Bayes factors. Chapter 8 proposes a method to evaluate the
presence and direction of individual mediated effects. An illustration shows how individual
informative hypotheses can be used to evaluate expectations This illustration shows the
flexibility of Bayesian informative hypothesis testing. The hypotheses use combinations of
constraints to match the theoretical expectation of the mediated effect. Furthermore, the
analysis is executed at the level of the individual effects rather than the population effects.

9.2 Bayesian informative hypothesis evaluation

This dissertation presents a wide variety of applications, considerations and implications of
Bayesian informative hypothesis testing. How do these chapters contribute to updating our
knowledge of the value of Bayesian informative hypothesis testing?

9.2.1 Informative hypotheses

The value of informative hypotheses can be defined in different ways. First and foremost, it
is valuable because it specifies the exact interest and question of a researcher. Especially in
experimental research where different conditions or treatments are compared, researchers
might have expectations about the direction or (relative) size of effects. This argument
is much cited in relation to the criticism of NHST. Informative hypotheses allow for the
evaluation of expectations and compare specific theories, while null hypotheses cannot be
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confirmed, nor do they seem likely possible true representations. A second valuable aspect
of informative hypotheses that is presented throughout this dissertation is the value of
adding knowledge to an analysis. The specification of a set of informative hypotheses might
be more challenging or difficult than applying a default null and alternative hypothesis.
However, the value in this difficulty is that the answer is much more interpretable and the
scope of generalizations of such a hypothesis test are more tangible. By taking the effort to
define the exact hypotheses, a researcher becomes more aware of the conclusions that are
and importantly, that are not possible to draw from the analysis (e.g. Chapter 3 and 4. This
awareness might cause a more specific comparison to be made (that may result in smaller
required sample sizes, see Chapter 2). Importantly, using an informative hypothesis helps
to express the question of interest.

9.2.2 Bayesian hypothesis evaluation

The informative hypotheses in this dissertation are considered in a Bayesian context.
Bayesian hypothesis testing is valuable because multiple theoretical expectations can
be compared to each other. Additionally, it is straightforward to update knowledge
sequentially. The Bayesian framework invites a researcher to think about prior distributions
and prior probabilities. It offers many possibilities to model the analysis exactly to the
question or balance the evidence and error rates. The necessity of making choices and
justifying them could be seen as a burden, but really provides a plentitude of opportunities.
Chapter 2 showed how choices have to be made about the desired properties of a Bayesian
hypothesis test. Chapters 3 and 4 showed the importance of asking the right question of
interest. Chapter 5 demonstrated how personal justification makes results more interpretable.
Justification is the most important key for any of these issues.

9.2.3 Updating knowledge

The final concept evaluated in this dissertation is the updating of knowledge. In any
single research, the focus is on the results of that one study. It is tempting to put the
responsibility of updating at the next researcher. However, updating knowledge is a shared
process. Updating is not exclusively for meta-analysts or systematic reviewers. Updating is
something everyone can contribute to by presenting their evidence such that it is ready to
be used and updated. It is important to formulate how knowledge can be updated on the
basis of a study. This invites readers to reflect more on this evidence and incorporate it in
their future research. In other words, the research does depend on each other, we just do
not make it explicit generally how this dependency can be traced back. The outcome of this
latest update regarding Bayesian informative hypothesis testing is that it comes with many
more challenges, but offers even more opportunities.

9.2.4 Practical considerations

In order to use Bayesian informative hypothesis evaluation, it is important to be aware
of the research question and goal of the research. This may seem obvious: of course
researchers think about what their research question is. Any academic paper presents a
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research question and any writing course or guidelines will tell you that there is no message
without a question. Statistical analyses might be chosen for their familiarity, even though
they might not match the research question adequately. That is, if you have been thought
to test null hypotheses, that is what you know, and those are the questions you ask. There
are many steps in statistical analyses that are important to question, as this dissertation
shows. If a researcher is designing an experiment and wants to determine the appropriate
sample size, they need to be aware of the question of interest. As Chapter 2 has shown,
this evokes many subsequent questions: how are the populations and effect sizes defined
under each considered hypothesis and what errors are you willing to make? Chapters 3
and 4 introduce the questioning about who a hypothesis should apply to. Is the research
interest in individuals or in an average effect? Finally, Chapter 5 discusses the distinction in
answering a research question: is the goal to describe how the current state of knowledge
can be changed by the findings or to describe the current state of knowledge? All these
matters depend on the goal of the research and should be considered as part of the definition
of a research question.

A second critical aspect of applying Bayesian informative hypothesis evaluation in practice,
is the current state of knowledge. Again, this might seem like an obvious aspect of
research. Literature reviews are directed at defining a gap in knowledge and describing
the expectations for a current research. However, as discussed at various points in this
dissertation, it is important to included these expectations in the statistical analyses. If
there is a mismatch between the expectations and the analysis, the conclusions from this
analysis too do not match the initial question. Practically, there are many aspects in a
research project where knowledge is available and used, either explicitely or implicitely.
Similarly, the knowledge about the specification of hypotheses, the exclusion of hypotheses,
the choice in the set of interest, the prior probability of hypotheses. All these elements of
knowledge are generally not described in a paper. This dissertation contributes to the more
explicit description of choices made, and alternatives that were rejected before coming to
the chosen analysis plan. All these pieces of information are a valuable part to the output
that is interpreted by others that know nothing of these choices.

9.3 Concluding remarks

9.3.1 Future directions

With raising awareness to opportunities of Bayesian informative hypothesis testing and the
important questions to be asking, many open ends and further research opportunities can be
identified. In consultations about informative hypothesis testing, one of the most frequent
questions is: which and how many hypotheses should I compare? Particularly the difference
between using a complement or an unconstrained hypothesis to evaluate the value of a
single hypothesis is an often-raised question. Chapter 2 briefly touches upon this issue but
no thorough investigation of the impacts of this difference have been made. Evidently, the
meaning of the conclusions coming from a comparison of an informative hypothesis to its
complement are different from those from a comparison to the unconstrained hypothesis.
Particularly, when only inequality constraints are considered, the Bayes factor against
an unconstrained hypothesis has an upper limit that is meaningful. Rather than ranging
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between − inf and inf the evidence in favor of an inequality constrained hypothesis relative
to the unconstrained can be only as high as the inverse of its complexity. This is true because
it is nested in the unconstrained hypothesis: if Hi : θ1 > θ2 is true, Hu : θ1, θ2 is also true.
The only difference is that Hu describes a greater range of possibilities and therefore has a
lower density, which is a function of the complexity of Hi. For the discussion above only
two hypotheses were considered. The matter gets more complicated if more hypotheses
are evaluated, or if the interest is in parts of an informative hypothesis too. The size of
the set of hypotheses, the inclusions of one or multiple complementary hypotheses, or
the consideration of multiple ‘subset’ hypotheses all influence the (un)conditional error
probabilities. If a hypothesis does not hold for everybody, it does not imply that it holds for
nobody. Further analysis of the individual datasets might show the presence of subgroups
in terms of the theoretical constraints.

9.3.2 The latest update

Bayesian informative hypothesis tests can be tailored to fit your research question exactly.
Many options and choices have to be considered before the actual analysis can be done.
Rather than avoid these choices or aim for golden standards and default options, we should
investigate the flexibility it offers us. Bayesian informative hypothesis testing challenges us
to be specific about the question we ask and where they come from. The questions we ask
today are different from the questions we asked a year ago. Those past questions are the
steps that have led us to where we are today.

Bayesian informative hypothesis testing invites us to think about our theories and be explicit
about them. Had it been my mother who could whistle and my father who could not, I might
have developed a theory that only mothers can whistle. By considering all the options in an
analysis explicitely, we know better what we can and cannot claim based on the outcomes.
My observations as a six-year old rejected the theory that gender determines whistling
abilities. I never bothered to investigate whether there is a gender difference in whistling
abilities at the population level. Bayesian informative hypothesis testing allows us to update
our knowledge, to make mistakes and learn from them. Update your knowledge. Do not be
afraid of being wrong, after all: it is all just one more step, leading to the next one. Even
though I was convinced of my personal theory, I adjusted my theory and continued to learn
more from there. Learning does not stop when I have learned to whistle a symphony, or
when I’ve learned how to perfect my technique. Every question is informed by previous
answers and will inform next wonderings. What will the next update be?
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Chapter 10

Appendices

10.1 Chapter 2. The power of informative hypotheses

Appendix 1. Numerical characteristics of tables

This appendix illustrates some numerical characteristics of Tables 2.4–2.17 by means of
examples.

First, in all tables the required sample size increases if the error probability or Indecision
probability decreases, or if B increases. Put differently, the more certainty is required for the
conclusion, the larger the sample size should be. If the violation size under Hi′ increases,
the required sample size decreases. Hypotheses with larger violations are more distinctly
different from Hi: datasets generated under Hi will less often result in a decision in favour
of Hi′ , and vice versa, compared to small violations.

Second, if K increases, a larger sample size is required. If K increases, but dHi is constant,
the differences between pair of means decreases. For example, if dHi = .5, the difference
between each pair of means is .5 for K = 2, .25 for K = 3, and .167 for K = 4. If differences
between means are smaller, it is more likely that the means of a sample will not adhere to
the population from which they were sampled, thus, a larger sample size is required.

Furthermore, in three situations, some symmetry is visible in the tables. First, if dHi and
dHc are equal with K = 2, Hi and Hc are exchangeable. Therefore, the Type i and Type c
error probabilities are equal. Since the Decision error probability is their average, it holds
that this is equal to both the Type i and Type c error probability. Thus, the required sample
size is independent of the type of error probability controlled. For example, as can be seen
in Table 2.4, for K = 2, dHi = .2, and a critical value for the error probabilities of .05, the
group sample size is 132, whether the Decision error, Type i, or Type c error probability is
controlled.

Second, if dHi and dHi′ are equal, Hi and Hi′ are exchangeable as well, and thus the Type i
and Type i′ error probabilities are equal. Thus, the sample size is independent of the type
of error controlled. As can be seen in Table 2.5, for K = 3, dHi = dHi′ = .5, and Hi′ with a
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large violation size, and a critical value for the error probability of .05, the sample size is
22, whether the Decision error, Type i, or Type c error probability is controlled.

Third, dHi and dHi′ can be unequal in two ways: dHi = .2 and dHi′ = .5, or dHi = .5 and
dHi′ = .2. The Type i error probability for dHi = .2 and dHi′ = .5 will be the same as the
Type i′ error probability for dHi = .5 and dHi′ = .2, and vice versa. Thus, the Decision error
probability will be exchangeable in these situations. Therefore, the required sample size to
control the Decision error probability will be the same whether the first or the second set of
effect sizes is used. As can be seen in Table 2.5, for K = 4, Hi′ with a small violation, and a
critical value for the Decision error probability of .1, for dHi = .5 and dHi′ = .2 or dHi = .2
and dHi′ = .5, the sample size is 338.

Note that examples of the three situations described above exist where the sample sizes are
not exactly equal, but about equal. This is caused by the sampling variation of he simulation
procedure presented in Section 2.5.4.

Contrary to expectations, the required sample size when comparing Hi with Hi′ is not
always smaller than when comparing Hi with Hc. As an example, a repetition of Example
1.3 from Section 2.6.1 follows:

Example 1.3 Suppose a researcher wants to evaluate Hi with Hc, with K = 4. The researcher
wants to control the Type i error probability at .025. He specifies dHi = .2, dHc = .2. As
can be seen in Table 2.4, the required sample size is 443. Suppose this researcher did
not consider Hc, but Hi′ . As can be seen in Table 2.5, the required sample size is larger
than 1, 000 if Hi′ was specified with a small violation of Hi, the sample size is 575 with a
medium violation, and 169 with a large violation.

In this example, the required sample size to control the Type i error comparing Hi with Hc

is smaller than the sample size when comparing Hi with Hi′ , only for medium and small
violations of Hi′ , but not for large violations of Hi′ . This can be explained best by means of
an example: Let us consider K = 4, such that ci = ci′ = 1/24, and cc = 23/24, then,

BFic =
fi/ci

fc/cc
=

fi/ 1
24

fc/ 23
24

=
fi

fc/23
= fi · 23

1
fc

BFii′ =
fi/ci

fi′/ci′
=

fi/ 1
24

fi′/ 1
24

=
fi
fi′

= fi ·
1
fi′

Thus, if the fit of the data to Hc is five times larger than the fit of the data to Hi′ , BFic and
BFii′ will be equal. If the fit of the data to Hc is less than five times the fit to Hi′ , BFic will
be larger than BFii′ , and if it is more than five times the fit to Hi′ , BFic will be smaller than
BFii′ . If Bayes factors based on population in which Hi is true are larger, the Type i error
probability becomes smaller.

In Example 1.3, only the Type i error is considered, which means that only data generated
under Hi is considered. Thus, fi will be the same for BFic and for BFii′ . However, the fit to
Hc or to Hi′ is also taken into account in the computation of the Bayes factor. Any part of
the posterior distribution that does not fit to Hi, will fit to Hc. Since Hi′ is a subset of Hc,
the fit to Hi′ will always be smaller than that to Hc.

More often than not, the fit of data generated under Hi will be larger to Hi′small
, than to
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Hi′large
. If data are generated based on a population in which Hi holds, it is more likely to

obtain a sample that adheres to Hi′small
than to Hi′large

. In general, using data simulated from
a population in which Hi is true, Bayes factors concerning Hi′large

will be larger than those
concerning Hi′small

, and thus the Type i error probability will be smaller for Hi′large
than for

Hi′small
.

This explains the differences in sample size for the different violation sizes under Hi′ .
Applying this to Example 1.3, it appears that for a large violation under Hi′ , the fit to Hc is
more than 23 times larger than to Hi′ . thus the required sample size for a large violation is
smaller than that for Hc.

10.2 Chapter 3. All for one or some for all? Evaluating
informative hypotheses using multiple N = 1 studies

10.2.1 Appendix 1. Computation of fit and complexity through
decomposition

In order to compute the Bayes factor that expresses the support in favor of Hm:

Hm : Rmπ > 0 (10.1)

against the unconstrained hypothesis Hu, the complexity and fit of Hm should be computed1.

Complexity and fit can be determined by taking samples from the unconstrained prior and
posterior distribution respectively. A common approach is to take Q samples, and determine
what proportion of the samples is in agreement with Hm, such that

fm =

∫
π∈Hm

g(π|x,Hu)δπ

≈
1
Q

Q∑
q=1

Iπq∈Hm

(10.2)

where πq is the qth sample from the unconstrained posterior and Iπq∈Hm = 1 if πq is in
agreement with Hm, and 0 otherwise. The complexity can be computed analogously, with
the difference that samples are taken from the prior distribution.

If Hm concerns the ordering of 8 parameters, the complexity can be derived analytically
and is 1/8! = 1/40, 320. Using Q = 100, 000 samples from the unconstrained prior only 2
or 3 samples of π are expected to adhere to the constraints under Hm. This implies that the
estimate of fm is very unstable. To obtain stable estimates impossibly huge samples are
needed. Similarly, the fit of a hypothesis with 8 parameters might be too small to accurately
approximate using 100, 000 samples. One solution is to increase the number of samples
which increases the computational time. Mulder et al. (2012) present another solution
that makes use of a decomposition of the complexity and fit. This procedure determines

1Note that for notational simplification the superscript i is dropped from the hypotheses, Bayes factors, and
parameters in this appendix.
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decomposed fit and complexity for each constraint in a hypothesis. Equation 10.3 shows
how the probability that all constraints hold, given Hu and the data x, can be rewritten as a
product of decomposed probabilities:

P(Rmπ > 0|Hu, x) =

K∏
k=1

P(R(k)
m π > 0|Hu, x,R(1:k−1)

m )

=

K∏
k=1

f (k)
m

≈

K∏
k=1

1
Q

Q∑
q=1

IR(k)
m πq>0, (10.3)

where K is the number of constraints in hypothesis m, R(k)
m is the kth row of Rm, R(1:k−1)

m
are the first k − 1 rows of Rm, f (k)

m is the decomposed fit for the kth constraint, the
indicator function IR(k)

m πq>0 = 1 if R(k)
m π

q > 0 and 0 otherwise and πq is sampled from
g(π|Hu, x,R(1:k−1)

m ).

Since each f (k)
m is only defined by one constraint, it is never a small value and can be

estimated with relatively few samples. The R Shiny application OneForAll belonging to
this paper uses Q = 10, 000. By multiplying the decomposed fit components similar to
Equation 10.3 the total fit can be obtained accurately.

The complexity can be derived analogously:

P(Rmπ > 0|Hu) =

K∏
k=1

P(R(k)
m π > 0|Hu,R(1:k−1)

m )

=

K∏
k=1

c(k)
m

≈

K∏
k=1

1
Q

Q∑
q=1

IR(k)
m πq>0, (10.4)

where c(k)
m is the decomposed complexity conditional for the kth constraint and πq is sampled

from h(π|Hu,R(1:k−1)
m ).

10.3 Chapter 7. Elapsed time estimates in virtual reality
and the physical world: The role of arousal and
emotional valence

10.3.1 Appendix 1. Model statement in JAGS

model{
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#model
for(i in 1:N){
y[i]~dnorm(y.hat[i], tau.e)

y.hat[i] <- b00 + b0c*Condition[i] + b0v*Valence[i] +
b0a*Arousal[i] + u[person[i]]

}
# prior distributions
b00 ~ dnorm(0, .000001)
b0c ~ dnorm(0, .000001)
b0v ~ dnorm(0, .000001)
b0a ~ dnorm(0, .000001)
tau.e ~ dgamma(.01, .01)

# random effect
for(j in 1:J){
u[j] ~ dnorm(0, tau.u)

}

tau.u ~ dgamma(.01, .01)

sigma.e <- 1/tau.e
sigma.u <- 1/tau.u

}
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10.3.2 Appendix 2. Model statement in JAGS for extended model

model{
for(i in 1:N){

# model
y[i]~dnorm(y.hat[i], tau.e)
y.hat[i] <- b00 +
b0c*Condition[i] +
b0v*Valence[i] +
b0a*Arousal[i] +
bm[1]*movie.f20[i] +
bm[2]*movie.f2[i] +
bm[3]*movie.f3[i] +
bm[4]*movie.f4[i] +
bm[5]*movie.f5[i] +
bm[6]*movie.f6[i] +
bm[7]*movie.f7[i] +
bm[8]*movie.f8[i] +
bm[9]*movie.f9[i] +
bm[10]*movie.f10[i] +
bm[11]*movie.f11[i] +
bm[12]*movie.f12[i] +
bm[13]*movie.f13[i] +
bm[14]*movie.f14[i] +
bm[15]*movie.f15[i] +
bm[16]*movie.f16[i] +
bm[17]*movie.f17[i] +
bm[18]*movie.f18[i] +
bm[19]*movie.f19[i] +
dm[1]*movie.i20[i] +
dm[2]*movie.i2[i] +
dm[3]*movie.i3[i] +
dm[4]*movie.i4[i] +
dm[5]*movie.i5[i] +
dm[6]*movie.i6[i] +
dm[7]*movie.i7[i] +
dm[8]*movie.i8[i] +
dm[9]*movie.i9[i] +
dm[10]*movie.i10[i] +
dm[11]*movie.i11[i] +
dm[12]*movie.i12[i] +
dm[13]*movie.i13[i] +
dm[14]*movie.i14[i] +
dm[15]*movie.i15[i] +
dm[16]*movie.i16[i] +
dm[17]*movie.i17[i] +
dm[18]*movie.i18[i] +
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dm[19]*movie.i19[i]
+ u[person[i]]

}
#priors
b00 ~ dnorm(0, .000001)
b0c ~ dnorm(0, .000001)
b0v ~ dnorm(0, .000001)
b0a ~ dnorm(0, .000001)
for(j in 1:19){
dm[j] ~ dnorm(0, .000001)
bm[j] ~ dnorm(0, .000001)

}
tau.e ~ dgamma(.01, .01)

#random effect
for(j in 1:J){
u[j] ~ dnorm(0, tau.u)

}
tau.u ~ dgamma(.01, .01)
sigma.e <- 1/tau.e
sigma.u <- 1/tau.u

}

10.3.3 Appendix 3. Supplementary tables extended model

Table 10.1
Parameter estimates

Parameter HPD Estimate 95% CI Standard error Std. coefficient
b00 0.496 [-0.229 : 1.125] .345 1.506
b0a 0.022 [-0.004 : 0.047] .013 0.097
b0c -0.469 [-0.863 : 0.055] .214 -0.797
b0v 0.028 [0.002 : 0.055] .013 0.103
τe 5.933 [5.238 : 6.675] .367 1.571
τu 14.605 [7.374 : 25.103] 4.562 3.936

Highest posterior density parameters estimates obtained from the Bayesian analysis, with a 95%
Credible Interval, standard error and standardized parameter value. b00 denotes the intercept, b0a,
b0c and b0v the regression coefficient for arousal, condition and valence, respectively, τe denotes
the residual variance and τu the individual intercept variance.
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Table 10.2
Bayes factors

Sample size 29 180 380 580
H1 versus H1c 1.23 3.07 4.46 5.51
H1 versus H2 10.08 25.11 36.48 45.07

Bayes factors expressing the relative evidence in the data for H1 versus H1c (top row) or H2
(bottom row) for effective sample sizes 29, 180, 380 and 580. Bayes factors for the unstandardized
analysis are presented here. Bayes factors are similar for the standardized analysis.

10.4 Chapter 8. Using Bayesian methods to test
mediators of intervention outcomes in Single case
experimental designs (SCEDs)

10.4.1 Appendix 1. R script for analyses

# This code allows for obtaining results of a Bayesian mediation
# analysis using data from a single participant.
# The results include plots of the posteriors, and point and interval
# summaries of the mediated effect conceptualized as the change in
# the level of the outcome variable following a change in level of
# the mediator and the mediated effect conceptualized as the change
# in the level of the outcome variable following a change in the
# trend of the mediator. The results also include Bayes Factors
# obtained using informative hypothesis testing to evaluate the
# relative support for the hypotheses that the effect # of treatment
# on the mediator and the effect of the mediator on the outcome
# are consistent with theory.
# Make sure you have JAGS installed before starting the analysis.
# You can install JAGS from the following website:
# https://sourceforge.net/projects/mcmc-jags/files/

############### Installing R packages needed for the analyses #####
install.packages(c("bain", "readr", "rjags", “coda”,

"ggplot2", “gridExtra”))

############################ Data information ######################
# The data set needs to contain the following variables
# (with the same names):
# Time = Measurement occasion
# Phase = 0 if phase A, 1 if phase B
# Time1 = Measurement occasion - 1
# Time2 = 0 at the first observation of phase B (computed as Time -
# occasion at the start of phase B)
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# phase_time2 = 0 in phase A and at the first occasion of phase B,
# count starting at 1 from the second observation in phase B
# ScoreM = scores on the mediator at each measurement occasion
# ScoreY = scores on the outcome at each measurement occasion
# Tmed = scores on the mediator with lag 1
# Tout = scores on the outcome with lag 1

################################# Data import ######################
library(readr)
Data_SCED_mediation <-

# Replace the .csv file name with the name of your data set
# Make sure your working directory contains the data file

read_csv("Data_SCED_mediation.csv")

######################### Step 1 Frequentist estimates #############
### This part of the code should not be changed
# Unstandardized piecewise regression frequentist estimates for
# phases 1 & 2
reg1 <- lm(ScoreM ~ Time1 + Phase + phase_time2 + Tmed,

Data_SCED_mediation)
reg2 <- lm(ScoreY ~ Time1 + Phase + phase_time2 + Tmed + Tout,
Data_SCED_mediation)

######################### Step 2 Data dependent priors #############
# Extract the coefficient estimates to be used in the data
# dependent priors
int.mean.m <- coefficients(reg1)[1]
time.mean.m <- coefficients(reg1)[2]
phase.mean.m <- coefficients(reg1)[3]
phasetime.mean.m <-coefficients(reg1)[4]
int.mean.y <- coefficients(reg2)[1]
time.mean.y <- coefficients(reg2)[2]
phase.mean.y <- coefficients(reg2)[3]
phasetime.mean.y <- coefficients(reg2)[4]
tmed.y <- coefficients(reg2)[5]
tout.y <- coefficients(reg2)[6]

################### Step 3 Run Rjags for Bayesian estimates ########
library(rjags)
N<-dim(Data_SCED_mediation)[1]

################### Model definition
modelstring <- as.character("
model{
##### Priors #####
# prior for the intercept in the equation predicting M
beta.0M ~ dnorm(int.mean.m, .001);
# prior for b1
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beta.1M ~ dnorm(time.mean.m, .001);
# prior for b2
beta.2M ~ dnorm(phase.mean.m, .001);
# prior for b3
beta.3M ~ dnorm(phasetime.mean.m, .001);
# prior for b4M
beta.4M ~ dnorm(tmed.y, .001);
# prior for the error precision of M
tau.eM ~ dgamma(.5, .5);
# prior for the intercept of Y
beta.0Y ~ dnorm(int.mean.y, .001);
# prior for b1Y
beta.1Y ~ dnorm(time.mean.y, .001);
# prior for b2Y
beta.2Y ~ dnorm(phase.mean.y, .001);
# prior for b3Y
beta.3Y ~ dnorm(phasetime.mean.y, .001);
# prior for b4Y
beta.4Y ~ dnorm(tmed.y, .001);
# prior for b5Y
beta.5Y ~ dnorm(tout.y, .001);
# prior for the error precision of Y
tau.eY ~ dgamma(.5, .5);
# priors for the missing data
Phase[N] ~ dnorm(0, .000001);
Time1[N]~ dnorm(0, .000001);
Tmed[1]~ dnorm(0, .000001);
Tout[1]~ dnorm(0, .000001);
phase_time2[N]~ dnorm(0, .000001);
##### Conditional probability of the data #####
# The regression model
for(i in 1:N){
m.prime[i] <- beta.0M + beta.1M*Time1[i] + beta.2M*Phase[i] +

beta.3M*phase_time2[i] + beta.4M*Tmed[i]
y.prime[i] <- beta.0Y + beta.1Y*Time1[i] + beta.2Y*Phase[i] +

beta.3Y*phase_time2[i] + beta.4Y*Tmed[i] +
beta.5Y*Tout[i]

# conditional distribution of M
ScoreM[i] ~ dnorm(m.prime[i], tau.eM);
# conditional distribution of Y
ScoreY[i] ~ dnorm(y.prime[i], tau.eY);
} # closes the regression model
}
")
model.file.name <- "Linear Regression.txt"
write(x = modelstring, file = model.file.name, append = FALSE)

################### Run the Bayesian piecewise regression in rjags
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# set seed for replicable MCMC samples
set.seed(123)
jags <- jags.model('Linear Regression.txt',
data = list('Time1' = Data_SCED_mediation$Time1,
'Phase' = Data_SCED_mediation$Phase,
'phase_time2' = Data_SCED_mediation$phase_time2,
'ScoreM'= Data_SCED_mediation$ScoreM,
'ScoreY'= Data_SCED_mediation$ScoreY,
'Tmed' = Data_SCED_mediation$Tmed,
'Tout' = Data_SCED_mediation$Tout,
'int.mean.m' = int.mean.m,
'time.mean.m' = time.mean.m,
'phase.mean.m' = phase.mean.m,
'phasetime.mean.m' = phasetime.mean.m,
'int.mean.y' = int.mean.y,
'time.mean.y' = time.mean.y,
'phase.mean.y' = phase.mean.y,
'phasetime.mean.y' = phasetime.mean.y,
'tmed.y' = tmed.y,
'tout.y' = tout.y,
'N' = N),
n.chains = 3)
out <- coda.samples(jags, variable.names = c("beta.0M",

"beta.1M",
"beta.2M",
"beta.3M",
"beta.4M",
"tau.eM",
"beta.0Y",
"beta.1Y",
"beta.2Y",
"beta.3Y",
"beta.4Y",
"beta.5Y",

# If missing values are of interest, remove the comments in the
# lines below and replace the number “13” with the number of
# observations in your data set plus 1.

# "Phase[13]",
# "Time1[13]",
# "Tmed[1]",
# "Tout[1]",
# "phase_time2[13]",
"tau.eY"),

n.iter = 100000)
summary(out)

###### Diagnose convergence
library(coda)
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model.as.mcmc.list <- as.mcmc.list(out)
gelman.diag(model.as.mcmc.list)
gelman.plot(model.as.mcmc.list)
plot(model.as.mcmc.list, trace = TRUE, density = FALSE)

###### Running additional iterations
out2 <- coda.samples(jags, variable.names = c("beta.0M",

"beta.1M",
"beta.2M",
"beta.3M",
"beta.4M",
"tau.eM",
"beta.0Y",
"beta.1Y",
"beta.2Y",
"beta.3Y",
"beta.4Y",
"beta.5Y",

# "Phase[13]",
# "Time1[13]",
# "Tmed[1]",
# "Tout[1]",
# "phase_time2[13]",
"tau.eY"),

n.iter=100000)
###### Diagnose convergence
model.as.mcmc.list <- as.mcmc.list(out2)
gelman.diag(model.as.mcmc.list)
gelman.plot(model.as.mcmc.list)
plot(model.as.mcmc.list, trace = TRUE, density = FALSE)
summary(out2)

###### Collect final draws
draws <- as.mcmc(do.call(rbind,model.as.mcmc.list))
draws <- as.data.frame(draws)

#### Step 4 Posterior distributions of the mediated effects ######
##### Draws for mediated effect(s)
# Option 1 for the a-path: change in level at the start of phase B
# (beta.2M)
# (beta.3M)
ablevel <- draws$beta.2M * draws$beta.4Y
abtrend <- draws$beta.3M * draws$beta.4Y

##### Plot the posterors of the mediated effects
library(ggplot2)
level <- ggplot(as.data.frame(ablevel)) +
geom_density(aes(x = ablevel), size = 1) +
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scale_x_continuous(limits=c(-30,30)) +
labs(x = NULL) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
axis.text.x = element_text(size = 14),
axis.text.y = element_blank(),
axis.title.y = element_text(size = 14),
axis.ticks.y = element_blank()) +
ylab("density") +
labs(title = "Indirect effect (level)", x = " ", y = "Density") +
theme(plot.title = element_text(color = "black",
size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(color="black", size=12, face="bold"),
axis.title.y = element_text(color="black", size=12, face="bold")) +
scale_color_grey()
trend <- ggplot(as.data.frame(abtrend)) +
geom_density(aes(x = abtrend), size=1) +
scale_x_continuous(limits=c(-30,30)) +
labs(x = NULL) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),

panel.background = element_blank(),
axis.line = element_line(colour="black"),
axis.text.x = element_text(size=14),
axis.text.y = element_blank(),
axis.title.y = element_text(size=14),
axis.ticks.y = element_blank()) +

labs(title = "Indirect effect (trend)", x = " ", y = " ") +
theme(plot.title = element_text(color = "black",
size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(color="black", size=12, face="bold"),
axis.title.y = element_text(color="black", size=12, face="bold")) +
scale_color_grey()

##### Make a panel containing both plots
library(gridExtra)
grid.arrange(level, trend, nrow = 1)

##### Obtain mean, medians, and quantiles for the mediated effect(s)
summary.stats.level <- summary(as.mcmc(ablevel))
summary.stats.trend <- summary(as.mcmc(abtrend))
summary.stats.level
summary.stats.trend

#### Obtain highest posterior density (HPD) intervals for the
# mediated effects
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HPD.interval.level <- HPDinterval(as.mcmc(ablevel), prob=.95)
HPD.interval.trend <- HPDinterval(as.mcmc(abtrend), prob=.95)
HPD.interval.level
HPD.interval.trend

##################### Step 5 Bayesian hypothesis testing ###########
library(bain)
# set seed for hypothesis testing
set.seed(1234)
# Collect estimates and covariance matrix
estimate <- colMeans(draws)
cov1 <- cov(draws)

###### Note
### This syntax tests the hypotheses that both the a and b paths are
### positive. This part of the syntax will need to be changed if your
### hypotheses are that one or both paths are negative.

### Option 1 for the a-path: change in level at the start of phase B
### (beta.2M)
results.level <- bain(estimate,
"beta.2M > 0 & beta.4Y >0;
beta.2M < 0;
beta.4Y < 0",
n = N, Sigma = cov1,
group_parameters = 0, joint_parameters = 18)
### Option 2 for the a-path: change in trend between the two phases
### (beta.3M)
results.trend <- bain(estimate,

"beta.3M > 0 & beta.4Y >0;
beta.3M < 0;
beta.4Y < 0",
n = N, Sigma = cov1,
group_parameters = 0, joint_parameters = 18)

###### Return output of Bain analysis
results.level
results.trend

##### Function to recompute posterior probabilities to include the
##### complement
complement.probs <- function(x, comp.hyps = NULL){
# comp.hyps is a vector containing the ID number of the
# hypothsis/es of which the complement should be included
# in the posterior probabilities
if(class(x) != "bain") stop("please provide a Bain

output object as x")
if(is.null(comp.hyps)) return(x$fit)
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oldnames <- row.names(x$fit)
for(i in comp.hyps){
x$fit <- rbind(x$fit, c(1-x$fit[i, 1:6],"BF" = 1/x$fit[i, 7],

"PMPa" = NA, "PMPb" = NA))
}
row.names(x$fit) = c(oldnames, paste0("Hc", comp.hyps))
PMPc.unst <- x$fit$Fit / x$fit$Com
PMPc <- PMPc.unst/sum(PMPc.unst, na.rm = TRUE)
x$fit <- cbind(x$fit, "PMPc" = PMPc)
return(x$fit)

}

##### Use function to compute posterior probabilities for all
##### hypotheses including the complement of H1 (comp.hyps = 1)
postprob.level <- complement.probs(results.level, comp.hyps = 1)
postprob.trend <- complement.probs(results.trend, comp.hyps = 1)
postprob.level
postprob.trend
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Gu, X., Mulder, J., Deković, M., & Hoijtink, H. (2014). Bayesian evaluation of inequality
constrained hypotheses. Psychological Methods, 19, 511–527. Retrieved from https:
//doi.org/10.1037/met0000017

Gu, X., Mulder, J., & Hoijtink, H. (2017). Approximated adjusted fractional Bayes factors:
A general method for testing informative hypotheses. British Journal of Mathematical and
Statistical Psychology, 71(2), 229–261. Retrieved from https://doi.org/10.1111/bmsp.12110

Haaf, J. M., & Rouder, J. N. (2017). Developing constraint in Bayesian mixed models.
Psychological Methods, 22(4), 779–798. Retrieved from https://doi.org/10.1037/

met0000156

Hamaker, L., E. (2012). Handbook of research methods for studying daily life. In M. R.
Mehl & S. Conner (Eds.) (pp. 43–61). New York, NY: Guilford.

Ham, K. van der, I. J. M. (2019). Elapsed time estimates in virtual reality and the physical
world: The role of arousal and emotional valence. Computers in Human Behavior, 94,
77–81. Retrieved from https://doi.org/https://doi.org/10.1016/j.chb.2019.01.005

Hancock, P., & Rausch, R. (2010). The effects of sex, age, and interval duration on the
perception of time. Acta Psychologica, 133(2), 170–179. Retrieved from https://doi.org/10.
1016/j.actpsy.2009.11.005

Hedges, L. V., Pustejovsky, J. E., & Shadish, W. R. (2012). A standardized mean difference
effect size for single case designs. Research Synthesis Methods, 3(3), 224–239. Retrieved
from https://doi.org/10.1002/jrsm.1052

Hedges, L. V., Pustejovsky, J. E., & Shadish, W. R. (2013). A standardized mean difference
effect size for multiple baseline designs across individuals. Research Synthesis Methods,
4(4), 324–341. Retrieved from https://doi.org/10.1002/jrsm.1086

Hofstee, W. K. B. (1984). Methodological decision rules as research policies: A betting
reconstruction of empirical research. Acta Psychologica, 56, 93–109.

Hoijtink, H. (2012). Informative Hypotheses. Theory and Practice for Behavioral and
Social Scientists. Boca Raton: Chapman & Hall/CRC.

Hoijtink, H., Gu, X., & Mulder, J. (n.d.). Bain, multiple group bayesian evaluation
of informative hypotheses. Retrieved from https://informative-hypotheses.sites.uu.nl/
wp-content/uploads/sites/23/2018/01/MGBain.pdf

Hoijtink, H., Klugkist, I., & Boelen, P. A. (Eds.). (2008). Bayesian Evaluation of
Informative Hypotheses. New York: Springer.

161

https://doi.org/10.1177/0145445507309028
https://doi.org/10.1177/0145445507309028
https://doi.org/10.1214/08-AOAS%20191
https://doi.org/10.1037/met0000017
https://doi.org/10.1037/met0000017
https://doi.org/10.1111/bmsp.12110
https://doi.org/10.1037/met0000156
https://doi.org/10.1037/met0000156
https://doi.org/https://doi.org/10.1016/j.chb.2019.01.005
https://doi.org/10.1016/j.actpsy.2009.11.005
https://doi.org/10.1016/j.actpsy.2009.11.005
https://doi.org/10.1002/jrsm.1052
https://doi.org/10.1002/jrsm.1086
https://informative-hypotheses.sites.uu.nl/wp-content/uploads/sites/23/2018/01/MGBain.pdf
https://informative-hypotheses.sites.uu.nl/wp-content/uploads/sites/23/2018/01/MGBain.pdf


Hoijtink, H., Mulder, J., Lissa, C. van, & Gu, X. (2019). A tutorial on testing hypotheses
using the bayes factor. Psychological Methods. Retrieved from https://doi.org/10.1037/

met0000201

Horner, R. H., Carr, E. G., Halle, J., McGee, G., Odom, S., & Wolery, M. (2005). The use of
single-subject research to identify evidence-based practice in special education. Exceptional
Children, 71(2), 165–179. Retrieved from https://doi.org/10.1177/001440290507100203

Hout, M. van den, Gangemi, A., Mancini, F., Engelhard, I. M., Rijkeboer, M. M., Dams,
M. van, & Klugkist, I. (2014). Behavior as information about threat in anxiety disorders:
A comparison of partients with anxiety disorders and non-anxious controls. Journal
of Behavior Therapy and Experimental Psychiatry, 45, 489–495. Retrieved from https:
//doi.org/10.1016/j.jbtep.2014.07.002

Indovina, P., Barone, D., Gallo, L., Chirico, A., Pietro, G. D., & Antonio, G. (2018).
Virtual reality as a distraction intervention to relieve pain and distress during medical
procedures. The Clinical Journal of Pain, 1. Retrieved from https://doi.org/10.1097/ajp.
0000000000000599

Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine,
2(8), 696–701. Retrieved from https://doi.org/10.1371/journal.pmed.0020124

Jarosz, A. F., & Wiley, J. (2017). What are the odds? A practical guide to computing and
reporting Bayes factors. The Journal of Problem Solving, 7(1), Article 2. Retrieved from
https://doi.org/10.7771/1932-6246.1167

JASP Team. (2018). JASP Version 0.19.0.0)[Computer software]. Retrieved from https:
//jasp-stats.org/

Jeffreys, H. (1998). Theory of probability (3rd ed.). Oxford University Press.

Johnson, S. R., Tomlinson, G. A., Hawker, H. A., Granton, J. T., & Feldman, B. M. (2010).
Methods to elicit belief for Bayesian priors: A systematic review. Journal of Clinical
Epidemiology, 63, 355–369. Retrieved from https://doi.org/10.1016/j.jclinepi.2009.06.003

Judd, C. M., & Kenny, D. A. (1981). Process analysis. Evaluation Review, 5(5), 602–619.
Retrieved from https://doi.org/10.1177/0193841x8100500502

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical
Association, 90, 773–795.

Kazdin, A. E. (2011). Single-case research designs (Second Edition). New York, NY:
Oxford University Press.

Klaassen, F. (2019). BayesianPower: Sample size and power for comparing inequality
constrained hypotheses (R package version 0.1.6).

Klaassen, F., Hoijtink, H., & Gu, X. (n.d.). The power of informative hypotheses. Retrieved
from https://doi.org/10.31219/osf.io/d5kf3

Klaassen, F., Zedelius, C. M., Veling, H., Aarts, H., & Hoijtink, H. (2017). All for
one or some for all? Evaluating informative hypotheses using multiple N =1 studies.
Behavior Research Methods, 50(6), 2276–2291. Retrieved from https://doi.org/10.3758/

s13428-017-0992-5

162

https://doi.org/10.1037/met0000201
https://doi.org/10.1037/met0000201
https://doi.org/10.1177/001440290507100203
https://doi.org/10.1016/j.jbtep.2014.07.002
https://doi.org/10.1016/j.jbtep.2014.07.002
https://doi.org/10.1097/ajp.0000000000000599
https://doi.org/10.1097/ajp.0000000000000599
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.7771/1932-6246.1167
https://jasp-stats.org/
https://jasp-stats.org/
https://doi.org/10.1016/j.jclinepi.2009.06.003
https://doi.org/10.1177/0193841x8100500502
https://doi.org/10.31219/osf.io/d5kf3
https://doi.org/10.3758/s13428-017-0992-5
https://doi.org/10.3758/s13428-017-0992-5


Klimecki, O. M., Mayer, S. V., Jusyte, A., Scheeff, J., & Schönenberg, M. (2016). Empathy
promotes altruistic behavior in economic interactions. Scientific Reports, 6(31961), 1–5.
Retrieved from https://doi.org/10.1038/srep31961

Klugkist, I., Laudy, O., & Hoijtink, H. (2005). Inequality constrained analysis of variance:
A Bayesian approach. Psychological Methods, 10(4), 477–493. Retrieved from https:
//doi.org/10.1037/1082-989X.10.4.477

Klugkist, I., Laudy, O., & Hoijtink, H. (2010). Bayesian evaluation of inequality and
equality constrained hypotheses for contingency tables. Psychological Methods, 15(3),
281–299. Retrieved from https://doi.org/10.1037/a0020137

Klugkist, I., Post, L., Haarhuis, F., & Wesel, F. van. (2014). Confirmatory methods, or
huge samples, are required to obtain power for the evaluation of theories. Open Journal for
Statistics, 4, 710–725. Retrieved from https://doi.org/10.4236/ojs.2014.49066

Klugkist, I., Wesel, F. van, & Bullens, J. (2011). Do we know what we test and to we test
what we want to know? International Journal of Behavioral Development, 35(6), 550–560.
Retrieved from https://doi.org/10.1177/0165025411425873

Kluytmans, A., Van de Schoot, R., Zedelius, C., Veling, H., Aarts, H., & Hoijtink, H.
(n.d.). Bayesian sequential evaluation of simple order constraints using dichotomous
within-subject data. Retrieved from Unpublished manuscript

Knapp, J. M., & Loomis, J. M. (2004). Limited field of view of head-mounted
displays is not the cause of distance underestimation in virtual environments.
Presence: Teleoperators and Virtual Environments, 13(5), 572–577. Retrieved
from https://doi.org/10.1162/1054746042545238

Konijn, E. A., Van de Schoot, R., Winter, S. D., & Ferguson, C. J. (2015). Possible
solution to publication bias through Bayesian statistics, including proper null hypothesis
testing. Communication Methods and Measures, 9(4), 280–302. Retrieved from https:
//doi.org/10.1080/19312458.2015.1096332

Kopp, B., Seer, C., Lange, F., Kluytmans, A., Kolossa, A., Fingscheidt, T., & Hoijtink, H.
(2016). P300 amplitude variations, prior probabilities, and llikelihood: A Bayesian ERP
study. Cognitive, Affective and Behavioral Neuroscience, 16, 911–928. Retrieved from
https://doi.org/10.3758/s13415-016-0442-3

Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian new statistics: Hypothesis testing,
estimation, meta-analysis, and planning from a Bayesian perspective. Psychonomic Bulletin
& Review, 25(1), 178–206. Retrieved from https://doi.org/10.2139/ssrn.2606016

Kuiper, R., & Hoijtink, H. (2010). Comparisons of means using exploratory and
confirmatory approaches. Psychological Methods, 15, 69–86. Retrieved from
https://doi.org/10.1037/a0018720

Lang, B., P. J. (1997). International affective picture system (IAPS): Technical manual and
affective ratings.

Linkenauger, S. A., Bülthoff, H. H., & Mohler, B. J. (2015). Virtual arms reach influences
perceived distances but only after experience reaching. Neuropsychologia, 70, 393–401.
Retrieved from https://doi.org/10.1016/j.neuropsychologia.2014.10.034

163

https://doi.org/10.1038/srep31961
https://doi.org/10.1037/1082-989X.10.4.477
https://doi.org/10.1037/1082-989X.10.4.477
https://doi.org/10.1037/a0020137
https://doi.org/10.4236/ojs.2014.49066
https://doi.org/10.1177/0165025411425873
https://doi.org/10.1162/1054746042545238
https://doi.org/10.1080/19312458.2015.1096332
https://doi.org/10.1080/19312458.2015.1096332
https://doi.org/10.3758/s13415-016-0442-3
https://doi.org/10.2139/ssrn.2606016
https://doi.org/10.1037/a0018720
https://doi.org/10.1016/j.neuropsychologia.2014.10.034


Lomnicki, Z. A. (1967). On the distribution of products of random variables. Journal of
the Royal Statistical Society: Series B (Methodological), 29(3), 513–524. Retrieved from
https://doi.org/10.1111/j.2517-6161.1967.tb00713.x

Maanen, L. van, Forstmann, B. U., Keuken, M. C., Wagenmakers, E. J., &
Heathcote, A. (2016). The impact of MRI scanner environment on perceptual
decision-making. Behavior Research Methods, 48, 184–200. Retrieved from
https://doi.org/10.3758/s13428-015-0563-6

Maas, C. J. M., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling.
Methodology, 1(3), 86–92. Retrieved from https://doi.org/10.1027/1614-2241.1.3.86

MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Routledge.

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets,
V. (2002). A comparison of methods to test mediation and other intervening
variable effects. Psychological Methods, 7(1), 83–104. Retrieved from https:
//doi.org/10.1037/1082-989x.7.1.83

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the
indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral
Research, 39(1), 99–128. Retrieved from https://doi.org/10.1207/s15327906mbr3901_4

MacKinnon, D. P., Warsi, G., & Dwyer, J. H. (1995). A simulation study of mediated
effect measures. Multivariate Behavioral Research, 30(1), 41–62. Retrieved from https:
//doi.org/10.1207/s15327906mbr3001_3

Manolov, R., & Moeyaert, M. (2016). How can single-case data be analyzed? Software
resources, tutorial, and reflections on analysis. Behavior Modification, 41(2), 179–228.
Retrieved from https://doi.org/10.1177/0145445516664307

Maric, M., Heyne, D. A., MacKinnon, D. P., Widenfelt, B. M. van, & Westenberg, P. M.
(2012). Cognitive mediation of cognitive-behavioural therapy outcomes for anxiety-based
school refusal. Behavioural and Cognitive Psychotherapy, 41(5), 549–564. Retrieved from
https://doi.org/10.1017/s1352465812000756

Maric, M., Prins, P.J.M., & Ollendick, T. (Eds.). (2015). Moderators and mediators of
youth treatment outcomes. New York: Oxford University Press.

Matthews, W. J., & Meck, W. H. (2016). Temporal cognition: Connecting subjective time
to perception, attention, and memory. Psychological Bulletin, 142(8), 865–907. Retrieved
from https://doi.org/10.1037/bul0000045

Merkle, E. C., & Rosseel, Y. (2018). Blavaan: Bayesian structural equation models
via parameter expansion. Journal of Statistical Software, 85(4). Retrieved from https:
//doi.org/10.18637/jss.v085.i04
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Wetenschappelijke samenvatting

Binnen de sociale en gedragswetenschappen neemt het gebruik van Bayesiaans informatief
hypothese toetsen toe (Mulder & Wagenmakers, 2016). Informatieve hypotheses
beschrijven gerichte verwachtingen van een onderzoeker die op basis van theorie worden
gespecificeerd (e.g. Hoijtink, 2012; Klugkist et al., 2005). Door deze specifieke hypotheses
te evalueren in plaats van standaard nul en alternatieve hypotheses kan de onderzoeksvraag
beter worden beantwoord. Bayesiaanse statistiek kan gebruikt worden om het relatieve
bewijs voor meerdere hypotheses te kwantificeren door middel van Bayes factors. Het
updaten van kennis centraal in de Bayesiaanse statistiek. De combinatie van informatieve
hypotheses en Bayesiaans updaten is nauw verbonden met de onderzoekscyclus. Deze
beschrijft hoe uit theorie verwachtingen worden geformuleerd, die vervolgens aan de hand
van data kunnen worden getoetst. De conclusies van statistische analysese kunnen dan
weer nieuwe theoriën inspireren of andere richtingen aan de verwachting geven. Met
de ontwikkeling van toegangelijke software en de uitbreiding van bestaande statistische
software groeit het gebruik van informatief Bayesiaans hypothese toetsen.

Het toegenomen gebruik van Bayesiaans informatief hypothese toetsen resulteert in
praktische, filosofische en methodologische vraagstukken. De Bayes factor heeft een
duidelijke interpretatie als het relatieve bewijs voor twee hypotheses. Minder eenduidig is
welke conclusies wel en niet op basis van een Bayes factor getrokken kunnen worden. Hoe
sterk moet het relatieve bewijs zijn voordat het overtuigend genoeg is? Moet de sterkte
van de conclusie afhangen van de hoeveelheid data die is gebruikt om tot het bewijs te
komen? Andere vragen gaan over het gebruik en het opstellen van informatieve hypotheses.
Elke verwachting kan in een hypotheses worden gevat. Zodoende is er een groot aantal
hypotheses dat potentieel interessant kan zijn. Hoe kan je als onderzoeker de keuze voor
bepaalde hypotheses maken, en andere buiten beschouwing laten? Om informatieve
hypothesen Bayesiaans te toetsen moet een onderzoeker beslissingen nemen over onder
andere de hypotheses, de prior verdelingen, en het interpreteren van Bayes factors. Voor
veel van deze beslissingen zijn geen richtlijnen beschikbaar. In deze dissertatie worden een
aantal van deze vraagstukken behandeld.

In Hoofdstuk 2 wordt het verband tussen steekproefgrootte en conditionele en
onconditionele foutkansen besproken in de context van Bayesiaans informatieve hypotheses
toetsen. Conditionele foutkansen, de kans op een foute beslissing gegeven de huidige
data, zijn van de Bayes factor af te leiden. Deze foutkansen hebben vaak de focus in
Bayesiaans hypothese toetsen. Onconditionele foutkansen bestaan ook voor Bayes factors.
Dit is de kans op een foute beslissing vóórdat data zijn geobserveerd. Beide kansen
hangen samen met de steekproefgrootte binnen een onderzoek. Het bepalen van de
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steekproefgrootte is een belangrijke stap bij het opzetten van een onderzoek. Hoofdstuk
2 beschrijft verschillende manieren waarop de steekproefgrootte bepaald kan worden
als een onderzoeker informatieve hypotheses Bayesiaans wil toetsen. Zo kan rekening
gehouden worden met een beoogde sterkte van bewijs, of met een maximaal toelaatbare
(on)conditionele foutkans. Dit hoofdstuk laat zien dat er veel keuzes zijn die gemaakt
moeten worden door de onderzoeker, en geeft handvatten om deze keuzes te maken.

Hoofdstuk 3 en 4 bespreken het niveau van de hypothese en de onderzoeksvraag. Standaard
worden de meeste hypothese toetsen op het groepsniveau uitgevoerd: is er gemiddeld
genomen in de populatie een verschil tussen mannen en vrouwen, of werkt een medicijn
gemiddeld genomen beter dan de placebo. Echter, in veel gevallen is de interesse van
de onderzoeker op het niveau van het individu: zou het deze patient meer helpen om
een medicijn te krijgen of een placebo? Is deze leerling gebaat bij bijles? Hoofdstuk
3 presenteert een methode om te evalueren of een hypothese niet gemiddeld, maar voor
iedereen geldt. Hiervoor worden individuele datasets onafhankelijk geanalyseerd, en deze
informatie kan met behulp van Bayesiaanse statistiek worden samengenomen. Hoofdstuk 4
beschrijft stap voor stap hoe een onderzoeker deze analyse ook zelf zou kunnen uitvoeren.
Deze vorm van informatie-synthese over meerdere individuele hypothese toetsen geeft
antwoord op een specifieke vraag, namelijk: wat is de beste hypothese voor iedereen?
Opnieuw laat dit zien hoe de keuzes van een onderzoeker de mogelijke conclusies van een
onderzoek beinvloeden.

In Hoofdstuk 5 wordt het filosofische aspect van het voortdurend updaten van kennis
verder onder de loep genomen. Bayesiaanse statistiek word vaak gepromoot vanwege de
mogelijkheid voortdurend voort te bouwen op bestaande kennis. In de praktijk gebeurt dit
nog weinig, omdat het vaak moeilijk is om de eerdere kennis betekenisvol te kwantificeren.
Als een gevolg blijven veel conclusies op het niveau van het beschrijven van het bewijs
in de huidige data, zonder daadwerklijk de kennis te updaten. In Hoofdstuk 5 word het
concept van de prior kans van een hypothese ontleed. Aan de hand van deze definitie is een
procedure ontwikkeld, gepresenteerd en getest, om hier betekenisvol een getal aan toe te
kennen.

Hoofdstuk 6 beschrijft de beschikbare software die is ontwikkeld, om de methoden
uit Hoofdstuk 2, 3 en 4 ook zelf toe te kunnen passen. Hoofdstuk 7 en 8 beschrijven
onderzoeken waar daadwerkelijk Bayesiaans informatief hypothese toetsen is toegepast.
Deze hoofdstukken illustreren de diversiteit en flexibiliteit aan conclusies die deze methode
met zich meebrengt. Zo is in Hoofdstuk 7 een repeated measures model gebruikt, en worden
informatieve hypotheses op het groepsniveau getoetst. In Hoofdstuk 8 wordt aan de hand
van een individueel mediatie model bekeken of er voor 1 persoon een gemedieerd effect kan
worden waargenomen. Dit zou uitgebreid kunnen worden met de methoden uit Hoofdstuk
3 om te kijken of hetzelfde effect voor alle proefpersonen gevonden kan worden.

Bayesiaans informatief hypothese toetsen biedt veel mogelijkheden aan de sociale en
gedragswetenschappen. Zo kunnen specifieke verwachtingen getoetst worden en kan kennis
over theorien blijven groeien naarmate meer data verzameld wordt. Deze mogelijkheden
komen ook met veel verantwoordelijkheden en keuzes. Het is van belang dat de keuzes die
gemaakt worden in het proces, worden toegelicht en onderbouwd. Daarnaast valt er ook
nog veel te leren over het belang van de keuze voor bepaalde hypotheses, steekproefgrootte
of het niveau van de analyse. Zolang we onze kennis ook hierover blijven updaten en laten
groeien, zal ook het gebruik van Bayesiaans informatief hypothese toetsen toenemen.
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