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Research goals

This research is concerned with individual centered analyses, in the form of multiple N = 1
studies. A central feature of this paper is that multiple informative hypotheses are formulated
for each person. These hypotheses are first evaluated at the individual level and subsequently
conclusions are formed at the group level. Specifically, this will be done in the context of a
within-subject experiment. Three questions are of interest when considering a set of hypotheses
and multiple N = 1 studies:

1. For each person, which hypothesis of a set is supported most?

2. For each hypothesis, what is the support that it holds for every person?

3. For a set hypotheses, are the persons homogeneous in which hypothesis is supported most?
These questions are assessed by means of individual Bayes factors and 2 additional measures.

Example

Zedelius, Veling, and Aarts (2011) conducted a within-subject experiment in which they inves-
tigated the effect of distraction and reward on memory.
– P = 26 persons participated in the experiment
– J = 8 experimental conditions (high or low reward (hr - lr); high or low interference (hi - li);
supra- or subliminal cue (sup - sub); resulting in for example hr-hi-sup)
– R = 7 replications in each condition (0 = failure; 1 = success)
The number of successes xi = [xi1, ..., x

i
J ] of person i can be modeled using a binomial model

with R trials and unknown success probabilities πi
j = [πi1, ...π

i
J ].

Informative hypotheses

Researchers can formulate informative hypotheses based on (competing) theories or expecta-
tions (Hoijtink, 2012). A general form of the informative hypotheses m = 1, ...,M is:

H i
m : Rmπ

i > 0, (1)

an informative hypothesis for person i using K constraints specified in the K rows of Rm.

E.g. for J = 4, Rm′ =

 1 −1 0 0
0 1 −1 0
0 0 1 −1

 results in H i
m′ : πi1 > πi2 > πi3 > πi4.

Example

Zedelius et al. (2011) formulated three
informative hypotheses:

H i
1 : πi1 > πi2 > ... > πi7 > πi8

H i
2 :

πi1+π
i
2

2 >
πi3+π

i
4

2 >
πi5+π

i
6

2 >
πi7+π

i
8

2

H i
3 :

πi1+π
i
5

2 >
πi2+π

i
6

2 >
πi3+π

i
7

2 >
πi4+π

i
8

2

H i
1 states that for each person i the success prob-

abilities are ordered from large to small over the
conditions 1, ..., J . For sake of notation, πi1 is used
rather than πihr-hi-sup and similarly for other condi-
tions.
H i

2 andH i
3 state that for each person i, pairs of suc-

cess probabilities are ordered from large to small.

Density, prior, posterior, Bayes factor

The density of the data (2) is a product over J binomial distributions. The prior (3) is a product
over Beta distributions with α0 = β0 = 1, that is, a uniform distribution. This prior is neutral
with respect to similar hypotheses. The posterior (4) is a product over Beta distributions with
α1 = xij + α0, β1 = (R− xij) + β0.

f (xi|πi) =

J∏
j=1

(
R

xij

)
(πij)

xij(1− πij)
R−xij (density) (2)

h(πi|H i
u) =

J∏
j=i

Γ(α0 + β0)

Γ(α0) · Γ(β0)
(πij)

α0−1(1− πij)β0−1 (unconstrained prior) (3)

g(πi|xi, H i
u) =

J∏
j=1

Γ(α1 + β1)

Γ(α1) · Γ(β1)
(πij)

α1−1(1− πij)β1−1 (unconstrained posterior) (4)

The BF that expresses support for H i
m against an unconstrained hypothesis H i

u can be written
as a ratio of complexity (cim) and fit (f im):

BF i
mu =

f im
cim

=

∫
πi∈Hi

m
g(πi|xi, H i

u)δπ
i∫

πi∈Hi
m
h(πi, H i

u)δπ
i
, (5)

where cim is that part (3) that is in agreement with f im is that part of (4) that is in agreement
with (1) (Klugkist, Laudy, & Hoijtink, 2010).

Example

Research goal 1. In order to select for each person the
best hypothesis from a set, each hypothesis can be evaluated
against the unconstrained hypothesis. The results are shown
in Table 1.
For person 1, it is not clear whether H1

1 or H1
3 is preferred

more, and both are not clearly preferred more than H1
u.

For person 3, all three experimental hypotheses are clearly
not supported by the data.
For person 25, H25

1 is clearly more supported than the other
two hypotheses.

Table 1. Individual BFs
i BF i

1u BF i
2u BF i

3u

1 1.30 0.87 1.89
2 2.23 1.42 4.12
3 0.04 0.10 0.56
... ... ... ...
24 25.52 4.36 7.01
25 24.43 5.25 3.66
26 0.09 0.12 0.33

Research goal 2. For each hypothesis it can be seen that the individual Bayes factors vary
in strength and direction of support. Thus it seems unlikely that any hypothesis holds for all
individuals.
Research goal 3. As described above, the individuals differ in which hypothesis (or multiple
hypotheses) are supported most.

Multiple N = 1

All P individual Bayes factors could be multiplied, which expresses the support for H i
m relative

to H i
u for every person i. This term is a function of P which makes it difficult to interpret.

Stephan and Penny (2007) have suggested using the geometric mean of the product of individual
Bayes factors for better interpretability:

gP-BFmm′ =

(
P∏
i=1

BFimu

) 1
P

, (6)

which describes the ‘average’ support in favor of H i
m found over P persons. It can be interpreted

as the Bayes factor that is expected for a next individual.
The gP-BF can be influenced by outliers, which is why we propose an additional measure, the
Evidence Rate (ER). The ER is a measure o fthe consistency in the preferred hypothesis over
multiple individual Bayes factors:

ER =
1
P

∑P
i=1 IBF i>1 if gP-BF < 1

1
P

∑P
i=1 IBF i<1 if gP-BF > 1

, (7)

where IBF i>1 = 1 if BF i > 1 and 0 otherwise.

Performance
Population 1 A population where all
individuals agree with H i

m.
All πi are sampled from h(πi|H i

m) =
h(πi|H i

u)Iπi∈Hi
m

, where Iπi∈Hi
m

= 1 if

πi ∈ H i
m and 0 otherwise

Population 2 A population where not
all individuals agree with H i

m.
All πi are sampled from N (log(π), IJ),
where π is the average of all πi from pop-
ulation 1, IJ is an identity matrix.

Figure 1. Performance of gP-BFmu and ER for J = 8
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Conclusion

• Using individual Bayes factors, hypotheses can be evaluated for each person

• The gP-BF provides insight in the average evidence over multiple persons

• The Evidence Rate provides insight in whether subgroups exist

• The simulation shows that if subgroups do not exist, this is detected. If indeed a homoge-
neous population exists, this is reflected in both the gP-BF and the ER.
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